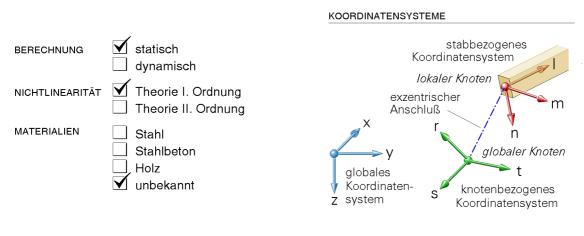


15.11.2013 Seite 1 kN, m, sec

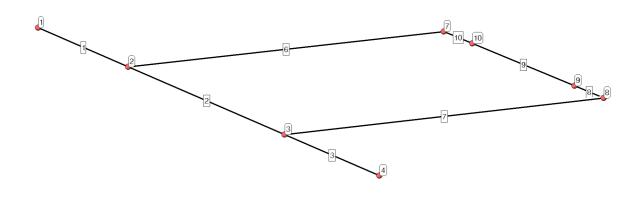


Systembeschreibung

GLOBALE INFORMATIONEN

Bauteil: Halterung Projekt: Metallbau Müller

Pfähle 590-620



SYSTEMKENNWERTE

- 0 Stäbe aus Stahl
- 0 Stäbe aus Stahlbeton
- 0 Stäbe aus Holz
- 8 Stäbe insgesamt
- 0 Stabzüge
- lose Stabgruppen 0
- gelagerte Knoten
- Knoten insgesamt
- 5 Lastfälle
- 0 Imperfektionen
- 2 Einwirkungen
- 1 Nachweise

SYSTEMBESCHREIBUNG

Übersicht: Gesamtsystem mit Knotennummern und Stabnummern

15.11.2013 Seite 2 kN, m, sec

Stäbe ohne Gruppenzuordnung

Knoten und globale Knotenkoordinaten

Knoten	x	У	Z	Knoten	x	У	Z
-	m	m	m	-	m	m	m
1	0.000	-0.500	0.000	7	0.876	0.000	0.000
2	0.000	0.000	0.000	8	0.876	0.845	0.000
3	0.000	0.845	0.000	9	0.876	0.693	0.000
4	0.000	1.345	0.000	10	0.876	0.152	0.000

r-s-t-Koordinatensysteme:

Für alle Knoten gilt: r-s-t = x-y-z

Tabelle der Knotenlager, Federkonstanten

	Verschi	ebungsbeh i	Verdrehungsbehinderung			
Knoten	Cur	Cus	Cut	Cvr	Cvs	Cvt
-	kN/m	kN/m	kN/m	kNm	kNm	kNm
1	starr	starr	starr	starr	starr	starr
2	starr	starr	starr			
3	starr	starr	starr			
4	starr	starr	starr	starr	starr	starr

Tabelle der Sondermaterialien

Bez.	E-Modul	G-Modu 1	α T
-	N/mm2	N/mm2	1 ⁻⁵ /K
SM #1	70000.0	27000.0	2,300

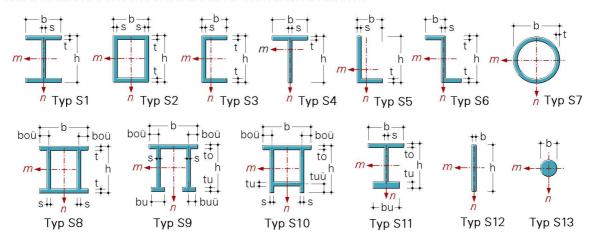
STÄBE OHNE GRUPPENZUORDNUNG

Stabtabelle

Länge weist den Abstand zwischen den lokalen Knoten des Stabes aus. α beschreibt das I-m-n-Stabkoordinatensystem (siehe globale Informationen). I zeigt immer vom lokalen Anfangsknoten zum lokalen Endknoten. n steht senkrecht auf I und m. Für α =0 liegt m immer parallel zur x-y-Ebene. Bei senkrechten Stäben ($\Delta x = \Delta y = 0.0$) ist für α =0 weiterhin m=y. Ein positives α dreht m im positiven Drehsinn um I.

Stab	KnoA	KnoE	Länge	α	Stab	KnoA	KnoE	Länge	α
-	-	-	m	0	-	-	-	m	0
1	2	1	0.500	0.0	7	3	8	0.876	0.0
2	3	2	0.845	0.0	8	8	9	0.152	0.0
3	4	3	0.500	0.0	9	9	10	0.540	0.0
6	7	2	0.876	0.0	10	10	7	0.152	0.0

Es sind keine exzentrischen Anschlüsse in der betrachteten Stabgruppe.



15.11.2013 Seite 3 kN, m, sec

Stäbe ohne Gruppenzuordnung

Es sind weder elastisch gebettete noch gelenkig angeschlossene Stäbe in der betrachteten Stabgruppe.

ERLÄUTERUNGSSKIZZE FÜR DIE NACHFOLGENDEN STAHLQUERSCHNITTE

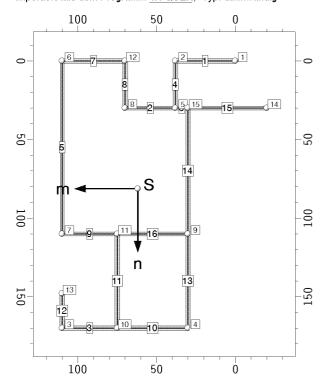
Stäbe mit parametrisierten Stahlbauquerschnitten

Bei gevouteten Stäben weist der Index A auf den Querschnitt am Anfangsknoten und der Index E auf den Querschnitt am Endknoten. In dieser Tabelle sind ggfls. auch die allgemein dünnwandigen Querschnitte aufgeführt (vgl. Material).

Stab	Material	Тур	h	b	t	s
=	=	-	cm	cm	CM	cm
6	SM #1	S3	16.00	8.00	1.00	1.00
7	SM #1 SM #1	S3	16.00	8.00	1.00	1.00
9	SM #1	S3	16.00	8.00	1.00	1.00

Stäbe mit Sonderquerschnitten

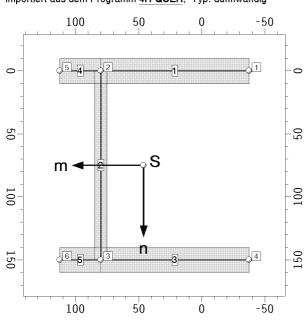
Die Querschnitte wurden aus dem Programm 4H-QUER importiert. Die Beschreibung der Querschnitte folgt im Anschluß der Systembeschreibung. Material: S = Stahl, B = Stahlbeton, H = Holz, A = Allgemein


Stab	Material	E-Modu1	G-Modu 1	αt	Тур	Querschnittsbezeichnung
-	-	MN/m ²	MN/m²	10 ⁻⁵ K	-	
1	A: SM #1	70000	27000	2.3	dünnwandig	Randpr_MM
2	A: SM #1	70000	27000	2.3	dünnwandig	Randpr_MM
3	A: SM #1	70000	27000	2.3	dünnwandig	Randpr_MM
8	A: SM #1	70000	27000	2.3	dünnwandig	Ecken Halterung
10	A: SM #1	70000	27000	2.3	dünnwandig	Ecken Halterung

15.11.2013 Seite 4 kN, m, sec

Stäbe ohne Gruppenzuordnung

Sonderquerschnitt: Randpr_MM importiert aus dem Programm 4H-QUER, Typ: dünnwandig


Punktkoordinaten

	ı		1		
Nr.	У	Z	Nr.	у	Z
-	mm	mm	-	mm	mm
1	0.0	0.0	12	70.0	0.0
2	38.0	0.0	9	30.0	110.0
3	110.0	170.0	10	75.0	170.0
4	30.0	170.0	11	75.0	110.0
5	38.0	30.0	13	110.0	148.0
6	110.0	0.0	14	-20.0	30.0
7	110.0	110.0	15	30.0	30.0
R	70 N	30 O			

Linienelemente

Nr.	PktA	PktE	Dicke	Nr.	PktA	PktE	Dicke
-	-	-	mm	_	-	-	mm
1	1	2	3.0	10	10	4	3.0
3	3	10	3.0	11	10	11	3.0
4	2	5	2.8	12	13	3	3.0
5	6	7	2.5	6	5	15	2.5
2	5	8	2.5	13	4	9	2.5
8	8	12	3.0	14	9	15	2.5
7	12	6	3.0	15	15	14	2.5
9	7	11	2.5	16	11	9	2.5

Sonderquerschnitt: Ecken Halterung importiert aus dem Programm 4H-QUER, Typ: dünnwandig

Punktkoordinaten

Nr.	у	Z	Nr.	у	Z
-	mm	mm		mm	mm
1	-37.5	0.0	4	-37.5	150.0
2	80.0	0.0	5	112.5	0.0
3	80.0	150.0	6	112.5	150.0

Linienelemente

Nr.	PktA	PktE	Dicke	Nr.	PktA	PktE	Dicke
-		=	mm	-	-	-	mm
1	1	2	20.0	4	2	5	20.0
2	2	3	10.0	5	3	6	20.0
3	3	4	20.0				

15.11.2013 Seite 5 kN, m, sec

Struktur der Belastung

MATERIALEINSATZ - MASSENBILANZ

allgem. dünnwandig:

(1) Import 4H-QUER-Bezeichnung: Randpr_MM

(2) U-Profil Parameter: h=16.0cm, b=8.0cm, t=1.0cm, s=1.0cm

(3) Import 4H-QUER-Bezeichnung: Ecken Halterung

Materialeinsatz: allgem. dünnwandig

Querschnitt	Stäbe	F1äche	ΣΊ	Volumen	Gewicht
-	-	CM ²	m	m³	t
(1) Import	3	19.4	1.845	0.0036	0.0000
(2) U-Profil	3	30.0	2.292	0.0069	0.0000
(3) Import	2	75.0	0.305	0.0023	0.0000
Summe dünnwandig:	8		4.442	0.0128	0.0000

STRUKTUR DER BELASTUNG

Beschreibung der Belastungsstruktur

Auf der linken Seite sind die Beziehungen der Einwirkungen, Lastfallordner und Lastfälle zueinander in einer Baumstruktur dargestellt. Auf der rechten Seite sind die überlagerungsspezifischen Eigenschaften den links stehenden Objekten zugeordnet angegeben. Ein Lastfallordner entspricht überlagerungstechnisch einer Extremierung der in ihm definierten Objekte und kann seinerseits wiederum additiv oder alternativ überlagert werden.

verwendete Symbole: **Einwirkung** Lastfallordner Lastfall Imperfektionsfälle 1: ständige Lasten ständige Lasten 1: Eigengewicht additiv 2: Sonst. veränderl. Lasten sonstige veränderliche Einwirkungen

- 🗍 2: Strömung MW additiv 1 3: Trossenzug additiv 4: Windlast additiv 5: Anprall additiv

15.11.2013 Seite 6 kN, m, sec

Beschreibung der Lastfälle

BESCHREIBUNG DER LASTFÄLLE

Lastfall 1: Eigengewicht

Überlagerungstyp: additiv, Teil der Einwirkung 1: ständige Lasten (ständige Lasten)

Lastresultierende: Σ Fx = 0.000 kN, Σ Fy = 0.000 kN, Σ Fz = 0.089 kN

Eigengewicht

Stab	γ	Stab	γ
-	kN/m³	-	kN/m³
1	7.000	6	7.000
2	7.000	8	7.000
3	7.000	9	7.000
7	7.000	10	7.000

15.11.2013 Seite 7 kN, m, sec

Beschreibung der Lastfälle

Lastfall 2: Strömung MW

Überlagerungstyp: additiv, Teil der Einwirkung 2: Sonst. veränderl. Lasten (sonstige veränderliche Einwirkungen)

Lastresultierende: Σ Fx = 0.000 kN, Σ Fy = 1.840 kN, Σ Fz = 0.000 kN

Stabeinzellasten

a ist der Abstand des Lastangriffspunktes vom lokalen Anfangsknoten, e ist der Abstand des Lastangriffspunktes vom lokalen Endknoten.

	Stab	123	a m	e m	P1 kN	P2 √N	P3 kN	M1 kNm	M2 kNm	M3 kNm
-	7	X V 7	0.438	0.438		1.840				

15.11.2013 Seite 8 kN, m, sec

Beschreibung der Lastfälle

Lastfall 3: Trossenzug

Überlagerungstyp: additiv, Teil der Einwirkung 2: Sonst. veränderl. Lasten (sonstige veränderliche Einwirkungen)

Lastresultierende: Σ Fx = -10.000 kN, Σ Fy = 0.000 kN, Σ Fz = 0.000 kN

Stabeinzellasten

a ist der Abstand des Lastangriffspunktes vom lokalen Anfangsknoten, e ist der Abstand des Lastangriffspunktes vom lokalen Endknoten.

Stab	123	a	e	P_1	P_2	P ₃	M_1	M 2	М3
-	=	m	m	kN	kΝ	kN	kNm	kNm	kNm
2	X V 7	0.425	0.420	-10,000					

15.11.2013 Seite 9 kN, m, sec

Beschreibung der Lastfälle

Lastfall 4: Windlast

Überlagerungstyp: additiv, Teil der Einwirkung 2: Sonst. veränderl. Lasten (sonstige veränderliche Einwirkungen) Lastresultierende: Σ Fx = 14.630 kN, Σ Fy = 0.000 kN, Σ Fz = 0.000 kN

Stabeinzellasten

a ist der Abstand des Lastangriffspunktes vom lokalen Anfangsknoten, e ist der Abstand des Lastangriffspunktes vom lokalen Endknoten.

Stab	123	a	e	P ₁	P_2	P ₃	M_1	M 2	М3
-	=	m	m	kN	kΝ	kN	kNm	kNm	kNm
9	X V 7	0.270	0.270	14,630					

15.11.2013 Seite 10 kN, m, sec

Beschreibung der geforderten Nachweise

Lastfall 5: Anprall

Überlagerungstyp: additiv, Teil der Einwirkung 2: Sonst. veränderl. Lasten (sonstige veränderliche Einwirkungen)

Lastresultierende: $\Sigma Fx = 0.000 \text{ kN}, \ \Sigma Fy = 10.000 \text{ kN}, \ \Sigma Fz = 0.000 \text{ kN}$

Knotenlasten

Knoten	123	P ₁	P ₂	Р3	M_1	M 2	М3
-	=	kN	kΝ	kΝ	kNm	kNm	kNm
7	xyz		10.000				

BESCHREIBUNG DER GEFORDERTEN NACHWEISE

Im Nachfolgenden bedeuten:

Ydom bei Überlagerungsregel DIN 1055-100: Kombinationsbeiwert für eine führende Verkehrslasteinwirkung bei Überlagerungsregel DIN 18800: Kombinationsbeiwert für eine Nebenkombination bei Überlagerungsregel DIN 1055-100: Kombinationsbeiwert für eine nichtführ. Verkehrslasteinwirkung bei Überlagerungsregel DIN 18800: Kombinationsbeiwert für eine Hauptkombination Teilsicherheitsbeiwert für ungünstig wirkende Laststellungen Teilsicherheitsbeiwert für günstig wirkende Laststellungen

Überlagerungsregeln FB101 und Eurocode verhalten sich wie DIN 1055-100 Bei nichtlinearer Berechnung bleiben Extremalbildungsvorschriften unberücksichtigt

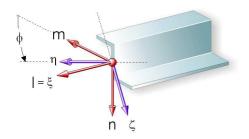
Nachweis 1: Spannungsnachweis LF H (Th. I. Ord.)

Spannungsnachweis LF H (Th. I. Ord.): Nachweis der extr. Spannungen ohne Normenbezug

15.11.2013 Seite 11 kN, m, sec

Lastkollektive zum Nachweis 1

Faktorisierung der Lastfälle. Negative Lastfallnummern beziehen sich auf Imperfektionen


LK	1	2	3	4	5
1	1.35	1.50	-	1.50	-
2	1.35 1.35	1.50	1.50	-	-
3	1.35	1.50	-	-	1.00

Stabverzeichnis zum Nachweis 1:

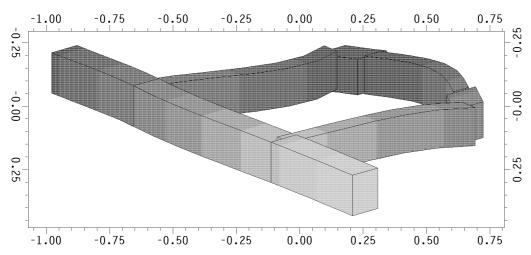
Der Nachweis erfolgt unabhängig von spez. Normen an Hand der nachfolgend aufgelisteten zulässigen Spannungen.

Stab	min σD	max σz	max τ	max σγ	Stab	min σD	max σz	max τ	max σγ
-	N/mm2	N/mm2	N/mm2	N/mm2	-	N/mm2	N/mm2	N/mm2	N/mm2
1	88.00	88.00	50.00		7	88.00	88.00	50.00	
2	88.00	88.00	50.00		8	48.00	48.00	28.00	
3	88.00	88.00	50.00		9	88.00	88.00	50.00	
6	88.00	88.00	50.00		10	48.00	48.00	28.00	

STABTEILUNG UND QUERSCHNITTSWERTE

Definition des Hauptachsensystems $\xi \eta \zeta$ über den Winkel ϕ

Stab	s	E-Modul	G-Modu1	αų	A	I_{T}	I_{η}	I_{ζ}	ф	hm	hn	κη	κζ
-	m	kN/m2	kN/m2	1/K	m2	m4	m4	m4	0	m	m	-	-
1	konst.	0.70E+08	0.27E+08	0.23E-04	0.1944E-02	0.2277E-05	0.7300E-05	0.2194E-05	-7.7	0.130	0.170		
2	konst.	0.70E+08	0.27E+08	0.23E-04	0.1944E-02	0.2277E-05	0.7300E-05	0.2194E-05	-7.7	0.130	0.170		
3	konst.	0.70E+08	0.27E+08	0.23E-04	0.1944E-02	0.2277E-05	0.7300E-05	0.2194E-05	-7.7	0.130	0.170		
6	konst.	0.70E+08	0.27E+08	0.23E-04	0.3000E-02	0.1008E-06	0.1130E-04	0.1780E-05	0.0	0.080	0.160		
7	konst.	0.70E+08	0.27E+08	0.23E-04	0.3000E-02	0.1008E-06	0.1130E-04	0.1780E-05	0.0	0.080	0.160		
8	konst.	0.70E+08	0.27E+08	0.23E-04	0.7500E-02	0.8500E-06	0.3676E-04	0.1343E-04	0.0	0.150	0.150		
9	konst.	0.70E+08	0.27E+08	0.23E-04	0.3000E-02	0.1008E-06	0.1130E-04	0.1780E-05	0.0	0.080	0.160		
10	konst.	0.70E+08	0.27E+08	0.23E-04	0.7500E-02	0.8500E-06	0.3676E-04	0.1343E-04	0.0	0.150	0.150		


Stabtragwerke

15.11.2013 Seite 12 kN, m, sec

Nachweis 1: Lastkollektiv 1: MW+Wind

NACHWEIS 1: LASTKOLLEKTIV 1: MW+WIND

deformiertes System Nachweis 1: Lastkollektiv 1: MW+Wind

Verformungen: Faktor: 190.

Min/Max: ux: -1.07/7.E-2 mm, uy: -0.714/5.E-2 mm, uz: -0.201/3.E-3 mm

Informationen zur Berechnung Nachweis 1: Lastkollektiv 1: MW+Wind

Gleichgewichtskontrolle		(X-Richtung)	(Y-Richtung)	(Z-Richtung)
Summe der Lagerkräfte		-21 . 94 kN	-2.76 kN	-0.12 kN
Summe der Bettungskräfte	+	0.00 kN +	0.00 kN +	0.00 kN
Gesamtsumme der Reaktionen	=	-21.94 kN =	-2.76 kN =	-0.12 kN
Summe der Lasten		21.94 kN	2.76 kN	0.12 kN

Lagerreaktionen der Knoten (yF-fach) Nachweis 1: Lastkollektiv 1: MW+Wind

Knonr	APr	AP_s	APt	AMr	AM_S	AM_t
-	kN	kΝ	kN	kNm	kNm	kNm
1	-1.86	-0.00	-0.00	-0.00	0.03	0.31
2	-10.00	-3.24	-0.06	0.00	0.00	0.00
3	-9.62	0.48	-0.06	0.00	0.00	0.00
4	-0.47	0.00	-0.00	0.00	0.03	-0.08
Min	-10.00	-3.24	-0.06	-0.00	0.00	-0.08
Max	-0.47	0.48	-0.00	0.00	0.03	0.31

Schnittkräfte (im Hauptachsensystem) Nachweis 1: Lastkollektiv 1: MW+Wind

Knonr	s	N	Q_{η}	Qς
_	m	kN	kN	kN
Stab 1				
2	0.00	0.00	-1.84	-0.24
1	0.50	0.00	-1.84	-0.25
Stab 2				
3	0.00	-0.00	-0.48	-0.06
2	0.85	-0.00	-0.48	-0.07
Stab 3				
4	0.00	0.00	0.47	0.07
3	0.50	0.00	0.47	0.06
Stab 6				

Knonr	s	N	Q_{η}	Qς
-	m	kN	kN	kΝ
7	0.00	11.37	3.24	-0.02
2	0.88	11.37	3.24	-0.04
Stab 7				
3	0.00	10.58	-0.48	0.04
	0.44	10.58	-0.48	0.03
	0.44	10.58	-3.24	0.03
8	0.88	10.58	-3.24	0.02
Stab 8				
8	0.00	3.24	10.58	0.02
9	0.15	3.24	10.58	0.01

räumliche ^{1/20}12 Stabtragwerke

15.11.2013 Seite 13 kN, m, sec

Nachweis 1: Lastkollektiv 2: Trossenzug

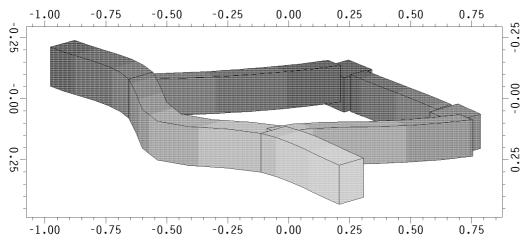
Schnittkräfte (im Hauptachsensystem) Nachweis 1: Lastkollektiv 1: MW+Wind

Knonr	s	N	Q_{η}	Qζ
=	m	kΝ	kΝ	kΝ
Stab 9				
9	0.00	3.24	10.58	0.01
	0.27	3.24	10.58	0.00
	0.27	3.24	-11.37	0.00
10	0.54	3.24	-11.37	-0.01

Knonr	s	N	Q_{η}	Qζ
_	m	kN	kN	kN
Stab	10			
10	0.00	3.24	-11.37	-0.01
7	0.15	3.24	-11.37	-0.02
Mini	imum	-0.00	-11.37	-0.25
Maxi	imum	11.37	10.58	0.07

maximale Ausnutzung Nachweis 1: Lastkollektiv 1: MW+Wind

Knonr	s	U
-	m	-
Stab 1		
2	0.00	0.245
	0.17	0.122
	0.25	0.095
	0.42	0.095
1	0.50	0.122
Stab 2		
3	0.00	0.036
	0.14	0.022
	0.28	0.022


Knonr	S	U
-	m	=-
2	0.85	0.127
Stab 3		
4	0.00	0.033
	0.33	0.033
3	0.50	0.062
Stab 6		
7	0.00	0.726
	0.58	0.059
2	0.88	0.297
Stab 7		

Knonr	s	U	
_	m	-	
3	0.00	0.052	
	0.15	0.043	
	0.44	0.093	
8	0.88	0.602	
Stab 8			
8	0.00	0.211	
	0.08	0.107	
9	0.15	0.098	
Stab 9			
9	0.00	0.190	

Knonr	s	U
-	m	-
	0.09	0.348
	0.27	1.033
	0.45	0.297
10	0.54	0.204
Stab 1	.0	
10	0.00	0.106
	0.05	0.106
7	0.15	0.255
Minim	0.022	
Maxim	1.033	

NACHWEIS 1: LASTKOLLEKTIV 2: TROSSENZUG

deformiertes System Nachweis 1: Lastkollektiv 2: Trossenzug

Verformungen: Faktor: 450.

Min/Max: ux: -6.E-2/0.443 mm, uy: -0.425/2.E-9 mm, uz: -0.201/6.E-3 mm

Informationen zur Berechnung Nachweis 1: Lastkollektiv 2: Trossenzug

Gleichgewichtskontrolle		(X-Richtung)	(Y-Richtung)	(Z-Richtung)
Summe der Lagerkräfte		15.00 kN	-2.76 kN	-0.12 kN
Summe der Bettungskräfte	+	0.00 kN +	0.00 kN H	- 0.00 kN
Gesamtsumme der Reaktionen	=	15.00 kN =	-2.76 kN =	-0.12 kN

15.11.2013 Seite 14 kN, m, sec

Nachweis 1: Lastkollektiv 2: Trossenzug

Informationen zur Berechnung Nachweis 1: Lastkollektiv 2: Trossenzug

Summe der Lasten

-15.00 kN

2.76 kN

0.12 kN

Lagerreaktionen der Knoten (yF-fach) Nachweis 1: Lastkollektiv 2: Trossenzug

Knonr	APr	AP_s	APt	AMr	AMs	AMt
-	kΝ	kΝ	kN	kNm	kNm	kNm
1	-3.18	-0.00	-0.00	-0.00	0.03	0.53
2	9.85	-0.08	-0.06	0.00	0.00	0.00
3	10.09	-2.68	-0.06	0.00	0.00	0.00
4	-1.76	-0.00	-0.00	0.00	0.03	-0.29
Min	-3.18	-2.68	-0.06	-0.00	0.00	-0.29
Max	10.09	-0.00	-0.00	0.00	0.03	0.53

Schnittkräfte (im Hauptachsensystem) Nachweis 1: Lastkollektiv 2: Trossenzug

Knonr	s	N	Q_{η}	Qζ
=	m	kΝ	kN	kN
Stab 1				
2	0.00	0.00	-3.15	-0.42
1	0.50	0.00	-3.15	-0.43
Stab 2				
3	0.00	0.00	-7.86	-1.06
	0.43	0.00	-7.86	-1.07
	0.43	0.00	7.01	0.95
2	0.85	0.00	7.01	0.94
Stab 3				
4	0.00	-0.00	1.75	0.24
3	0.50	-0.00	1.75	0.23
Stab 6				
7	0.00	0.40	0.08	-0.02
2	0.88	0.40	0.08	-0.04
Stab 7				

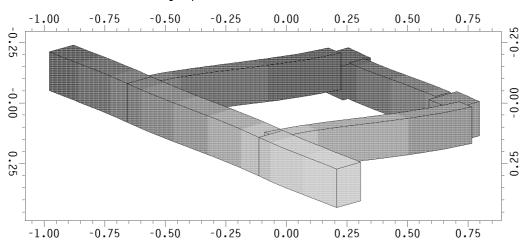
Knonr	s	N	Q_{η}	Qς
-	m	kN	kΝ	kN
3	0.00	-0.40	2.68	0.04
	0.44	-0.40	2.68	0.03
	0.44	-0.40	-0.08	0.03
8	0.88	-0.40	-0.08	0.02
Stab	8			
8	0.00	0.08	-0.40	0.02
9	0.15	0.08	-0.40	0.01
Stab	9			
9	0.00	0.08	-0.40	0.01
10	0.54	0.08	-0.40	-0.01
Stab	10			
10	0.00	0.08	-0.40	-0.01
7	0.15	0.08	-0.40	-0.02
Min	imum	-0.40	-7.86	-1.07
Max	imum	0.40	7.01	0.95

maximale Ausnutzung Nachweis 1: Lastkollektiv 2: Trossenzug

Knonr	s	U
-	m	-
Stab 1		
2	0.00	0.418
	0.17	0.209
	0.25	0.154
	0.42	0.154
1	0.50	0.209
Stab 2		
3	0.00	0.608
	0.14	0.355
	0.28	0.355

Knonr	S	U
=	m	=
	0.43	0.722
	0.57	0.331
	0.70	0.317
2	0.85	0.450
Stab 3		
4	0.00	0.116
	0.08	0.090
	0.25	0.090
	0.33	0.116
3	0.50	0.232

Knonr	S	U
_	m	-
Stab 6		
7	0.00	0.056
2	0.88	0.033
Stab 7		
3	0.00	0.344
	0.29	0.061
8	0.88	0.068
Stab 8		
8	0.00	0.024
9	0.15	0.016


Knonr	S	U
_	m	-
Stab 9		
9	0.00	0.044
	0.27	0.007
	0.36	0.008
10	0.54	0.033
Stab 1	0	
10	0.00	0.012
7	0.15	0.020
Minimum		0.007
Maximum		0.722

15.11.2013 Seite 15 kN, m, sec

Nachweis 1: Lastkollektiv 3: Strömung+Anprall

NACHWEIS 1: LASTKOLLEKTIV 3: STRÖMUNG+ANPRALL

deformiertes System Nachweis 1: Lastkollektiv 3: Strömung+Anprall

Verformungen: Faktor: 60.

Min/Max: ux: -10.E-2/0.164 mm, uy: -3.5/3.E-9 mm, uz: -0.203/9.E-3 mm

Informationen zur Berechnung Nachweis 1: Lastkollektiv 3: Strömung+Anprall

Gleichgewichtskontrolle		(X-Richtung)		(Y-Richtung)		(Z-Richtung)
Summe der Lagerkräfte		0.00 kN		-12.76 kN		-0.12 kN
Summe der Bettungskräfte	+	0.00 kN	+	0.00 kN	+	0.00 kN
Gesamtsumme der Reaktionen	=	0.00 kN	=	-12.76 kN	=	-0.12 kN
Summe der Lasten		0.00 kN		12.76 kN		0.12 kN

Lagerreaktionen der Knoten (yF-fach) Nachweis 1: Lastkollektiv 3: Strömung+Anprall

Knonr	APr	AP_s	APt	$AM_{\mathtt{r}}$	AM_s	AMt
-	kΝ	kΝ	kN	kNm	kNm	kNm
1	-3.84	-0.00	-0.00	-0.00	0.03	0.64
2	-4.66	-5.61	-0.06	0.00	0.00	-0.00
3	3.99	-7.15	-0.06	0.00	0.00	0.00
4	4.51	-0.00	-0.00	0.00	0.03	0.75
Min	-4.66	-7.15	-0.06	-0.00	0.00	-0.00
Max	4.51	-0.00	-0.00	0.00	0.03	0.75

Schnittkräfte (im Hauptachsensystem) Nachweis 1: Lastkollektiv 3: Strömung+Anprall

Knonr	s	N	Q_{η}	Qς
_	m	kΝ	kN	kN
Stab 1				
2	0.00	0.00	-3.81	-0.51
1	0.50	0.00	-3.80	-0.52
Stab 2				
3	0.00	0.00	-2.90	-0.39
2	0.85	0.00	-2.90	-0.40
Stab 3				
4	0.00	-0.00	-4.47	-0.61
3	0.50	-0.00	-4.47	-0.61
Stab 6				

Knonr	s	N	Q_{η}	Qς
-	m	kΝ	kN	kN
7	0.00	5.58	5.61	-0.02
2	0.88	5.58	5.61	-0.04
Stab 7	7			
3	0.00	-5.58	7.15	0.04
	0.44	-5.58	7.15	0.03
	0.44	-5.58	4.39	0.03
8	0.88	-5.58	4.39	0.02
Stab 8	3			
8	0.00	-4.39	-5.58	0.02
9	0.15	-4.39	-5.58	0.01

15.11.2013 Seite 16 kN, m, sec

Nachweis 1: Lastkollektiv 3: Strömung+Anprall

Schnittkräfte (im Hauptachsensystem) Nachweis 1: Lastkollektiv 3: Strömung+Anprall

Knonr	s	N	Q_{η}	Qζ
-	m	kN	kN	kN
Stab	9			
9	0.00	-4.39	-5.58	0.01
10	0.54	-4.39	-5.58	-0.01
Stab	10			

Knonr	s	N	Q_{η}	Qς
=-	m	kΝ	kΝ	kΝ
10	0.00	-4.39	-5.58	-0.01
7	0.15	-4.39	-5.58	-0.02
Minim	ıum	-5.58	-5.58	-0.61
Maxim	ium	5.58	7.15	0.04

maximale Ausnutzung Nachweis 1: Lastkollektiv 3: Strömung+Anprall

Knonr	s	U
-	m	-
Stab 1		
2	0.00	0.505
	0.17	0.253
	0.25	0.183
	0.42	0.183
1	0.50	0.253
Stab 2		
3	0.00	0.501
	0.28	0.174
	0.43	0.131

Knonr	s	U
-	m	-
	0.57	0.151
2	0.85	0.475
Stab 3		
4	0.00	0.297
	0.08	0.192
	0.25	0.192
3	0.50	0.594
Stab 6		
7	0.00	0.897
	0.44	0.101

Stab 7	Knonr	S	U
Stab 7 3 0.00 0.979 0.29 0.227 0.44 0.150 8 0.88 0.840 Stab 8 8 0.00 0.307 9 0.15 0.197	=	m	=
3 0.00 0.979 0.29 0.227 0.44 0.150 8 0.88 0.840 Stab 8 8 0.00 0.307 9 0.15 0.197	2	0.88	0.874
0.29 0.227 0.44 0.150 8 0.88 0.840 Stab 8 8 0.00 0.307 9 0.15 0.197	Stab 7		
0.44 0.150 8 0.88 0.840 Stab 8 8 0.00 0.307 9 0.15 0.197	3	0.00	0.979
8 0.88 0.840 Stab 8 0.00 0.307 9 0.15 0.197		0.29	0.227
8 0.00 0.307 9 0.15 0.197		0.44	0.150
8 0.00 0.307 9 0.15 0.197	8	0.88	0.840
9 0.15 0.197	Stab 8		
3 0.10 0.137	8	0.00	0.307
Stab 9	9	0.15	0.197
	Stab 9		

Knonr	s	U
-	m	=
9	0.00	0.530
	0.18	0.169
	0.27	0.100
	0.36	0.193
10	0.54	0.554
Stab 1	0	
10	0.00	0.193
7	0.15	0.303
Minim	0.100	
Maximum		0.979