Interim Report September 2007

Action recommendations for priority cost-effective planning of measures [Deliverable 4.2]

LIFE05 ENV/D/000182

Water Resources Management in Cooperation with Agriculture (WAgriCo) LIFE05 ENV/D000182

Action recommendations for priority cost-effective planning of measures

Thomas Schmidt, Tania Runge and Bernhard Osterburg

Deliverable 4.2

state: September 2007

Federal Agricultural Research Centre Institute of Rural Studies

со	NTENTS	Page
1	Introduction	1
2	Profiles of WagriCo measures in Lower Saxony	2
3	Ranking of WAgriCo measures offered in Lower Saxony	20
4	Combinations of WAgriCo measures and estimated cumulative effects in Lower Saxony	22
5	Action recommendations for priority cost-effective planning of measures	25
Ref	ferences	26
An	nexes	27

1 Introduction

The major problem for reaching the objectives of the Water Framework Directive (WFD) in Lower Saxony is high nitrate concentrations in the groundwater. Therefore, the planning of measures targets to reduce N losses under agricultural land use. Other aspects like reduction of reduction of surface runoff or phosphorus immissions are positive environmental side-effects of the selected measures and evaluated in a qualitative way within the project approach for Lower Saxony.

The cost-effective planning is carried out in two steps within the WAgriCo-project. First, the priority areas are selected and characterised as the measures shall be concentrated in those areas. For the methodology see deliverable D 6.1_LS (Eisele, 2007, in German). The next step is the selection of the most appropriate measures. This deliverable describes the measures and methodology for this step. Cost aspects are discussed more intensively in task 7. In this paper cost, estimates are based on public transfer payments to farmers for the selected voluntary measures. These costs as well as assumptions on environmental effects are used for the calculation of cost-effectiveness.

This deliverable presents in chapter 2 a toolbox of 13 action-oriented measures and one result-oriented measure offered for a practical test within the WAgriCo project in the years 2006/2007 and 2007/2008. The selection of the 14 measures is the result of a cooperative approach. The deliverable D 4.1 (Schmidt et al., 2007, in German) contains extended descriptions of 22 potentially suitable water protection measures and the general framework for the implementation of water protection measures.

A ranking of the 14 selected measures by cost-effectiveness to reduce N losses to the groundwater and by additional positive ecological effects as well as by the applicability to farm types is shown in chapter 3. The estimation of the ecologic impacts is based on a literature review and expert knowledge.

In addition to the single specifications, the combination of WAgriCo-measures and their cumulative ecological and economic effects (chapter 4) will be used as an element for modelling, together with the methods for cost predictions and scenario analysis described in deliverables 7.1 (Osterburg and Runge, 2007) and 7.2 (Osterburg et al., 2007). Hence, final conclusions on 'action recommendations for priority cost-effective planning of measures' are limited to the comparison of single measures and to combinations at farm scale as a basis of further planning (chapter 5). A suggestion for the state-wide implementation, considering the project results, will be a subject of deliverable 9.2 (due in April 2008).

2 Profiles of WagriCo measures in Lower Saxony

This part of the report contains sheets of all 14 measures that are selected for a practical test within the WAgriCo-project. The evaluation of the ecologic effects of the measures is based on a prior work at FAL (Osterburg et al., 2007), reviewed by the WAgriCo experts with regard to N reduction potentials of the offered measures. Project results regarding effects of measures on N surplus reduction are not available yet. Once additional data analysis has been performed, the estimated effects will be re-assessed if appropriate. Table 1 contains an overview over the tested measures with a short characterisation followed by the measure sheets, one for each measure.

No	Description	Reference unit	Category of measures	Main scope
H 1	catch cropping after harvest, winter hardy, late ploughing	ha	greening	reduction of N leaching
H 2	catch cropping after harvest, standard	ha	greening	reduction of N leaching
Н3	three-year fallow with active greening	ha	greening	reduction of N leaching and N surplus
H 4	volunteer rye or triticale before summer crops	ha	greening, reduced tillage	reduction of N leaching and mineralization
Н 5	No soil tillage/ploughing in autumn after maize/sugar-beet	ha	reduced tillage	reduction of N leaching and mineralization
H 6	Restrictions for farm manure application in autumn	farm	manure management	reduction of N leaching and N surplus
Η 7	Improved slurry application techniques	ha	manure management	reduction of N leaching and N surplus
H 8	Reduced row spacing for maize	ha	cultivation technique	reduction of N leaching and N surplus
Н9	Use of ammonium based liquid fertilisers using injection technique in cereals	ha	manure management	reduction of N leaching and N surplus
H 10	Application of stabilised mineral fertilizer in spring on winter cereals and potatoes	ha	manure management	reduction of N leaching and N surplus
H 11	Undersown catch crops in maize	ha	greening	reduction of N leaching
H 12	Turnip (brassica rapa sylvestris) as catch crop before winter cereals	ha	greening	reduction of N leaching
H 13	volunteer rape seedlings before winter cereals respectively summer crops	ha	greening, reduced tillage	reduction of N leaching and mineralization
Е	Result-oriented measure to improve N use efficiency	farm	manure management	reduction of N surplus

Table 1: List of WAgriCo-measures in Lower Saxony

The profiles of all measures are described in detail, using a standardised form. The design of the form and some information about the measures were taken from Osterburg et al., 2007).

First the entire name of the measure and its internal WAgriCo number is mentioned on the measure sheet followed by a short description of the intended environmental target and the target area. The main target for all of the selected measures is the reduction of diffuse N pollution towards groundwater. The target area is the farmed parcel, except for H 6 (restrictions for farm manure application) and the resultoriented measure, which have to be implemented and managed at farm scale. The measure sheet is further divided into three sections: The first part contains the management conditions that have to be followed by the farmers and additional remarks. The detailed management prescriptions as well as the characterization of the reference situation are determining the following ecologic appraisal. All changes in the management conditions and the reference situation affect the environmental impact of the measure. The next section contains a qualitative assessment of the suitability of the measure concerning site conditions, farm type and land use. In the process of finding applicable measures it is of central importance to consider this appraisal.

The third section of the form is the proper evaluation of the measure itself and contains quantitative information. It consists of three parts: The payment in \in per hectare, the potential impacts of the measure to reduce N losses estimated using the indicators 'N balance' and 'soil mineral N', and figures on cost-effectiveness. For N reduction potentials a range between minimum and maximum effect and the expected average effect are presented. The cost-effectiveness [€/kg N] is calculated on basis of payments [€/ha] divided by the N reduction [kg N/ha].

There is often quite a large variation of ecological effects, even if all management conditions are correctly realised. The result depends on the one side on weather conditions that can not be influenced by the farmers, on the other side the crop / cultivation technology and fertiliser management can have a high influence. Sometimes there is no N reduction at all, and in these cases the cost-effectiveness is infinitely high. Additional information about implementation conditions and environmental impacts on other natural resources helps to select appropriate measures considering beneficial side-effects. A more detailed description of the other environmental interrelationships of the measures are presented in Annex 1 on the basis of impact charts. Finally, some comments complete the evaluation with additional information for a successful implementation of the measures.

2.1 catch cropping after harvest, winter hardy, late ploughing (H 1)

Environmental target:

reduction of N-leaching over winter, accumulation of N in biomass over a long period

Target area:

parcel scale

Management conditions	Explanations and recommendations			
sow legume-free, winter-hardy ground cover (at least 30% of growing crop has to be winter hardy) by 5 th of September	to avoid biological N-fixation leguminous plants are excluded, winter-hardy plants conserve N over winter, to achieve a positive environmental impact it is essential to have a good growth of the catch crop			
N fertiliser: max. 40 kg creditable N for green manure, max. 80 kg creditable N for use as fodder (with removal)	a renouncement of N-fertilisation in autumn is recommended for water protection reasons, especially if catch crops are not harvested			
after rape, maize and potatoes no N-fertilisation for catch crop	after these crops enough N remains in the soil, so that no N fertilisation is necessary to assure a good growth of catch crops			
no grazing	to prevent hot-spots of N losses due to animal excrements			
ploughing not before 15 th of March	minimizing the period of time without plants on the ground for a secure conservation of the N captured in the biomass of the catch crop until the following crop			
	For a positive effect on N-surplus it is necessary to include N-fertilisation of the catch crop into the fertilising plan for crop rotation, unless the catch crop is harvested			
Reference situation without measure (for impact assessment)				
uncultivated field before summer crops (ploug	ghed in autumn or non-returning tillage of the stubble field)			

Assessment of suitability: +++ = very good, ++ = good, + = modest, 0 = unapt

Site condition (soil/cli	Farm type / organic N-input			Land use		
sandy soil, < 600 mm	++	arable	(< 40 kg N/ha)	++	arable	+++
sandy soil, >= 600 mm	+++	pigs/pc	oultry (40-120 kg N/ha)	+++	grassland	0
loamy soil, < 600 mm	++	pigs/pc	oultry (> 120 kg N/ha)	+++	permanent crops	0
loamy soil, >= 600 mm	++	dairy	(40-120 kg/ha)	+++	vegetables	+++
peatland, organic soil	+++	dairy	(>120 kg N/ha)	+++		

Specification of land suitablity: on arable land before summer crops; prior crop harvested before end of August

Payment [€/ha]	nt [€/ha] Indicators Reduction [kg N/ha]		Cost-effectiveness [€/kg N]				
		min.	Ø	max.	min.	Ø	max.
120 (2006: 100)	N balance	0	20	40	3	6	∞
120 (2000. 100)	soil mineral N autumn	30	40	60	2	3	4
implementation co	other e	nvironi	mental in	npacts			
acceptance ++		climate protection				+	
possibility to control ++		landscape and nature conservation					++
possibility to adminis	trate +++	soil protection, erosion control					+++

Comments: If the catch crops are well established, the measure has an assured positive effect on soil mineral N in autumn, especially on sandy soils and not too heavy soils in regions with enough water availability in autumn. Catch crop growing reduces the quantity of the leachate. This measure is difficult to be established in dry areas without irrigation. The suitability is influenced by the length of the vegetation period, among others dependent on altitude. An increase of the N surplus can not be excluded, because it is difficult to control whether the N conserved by the catch crops is taken into account in the fertilising plan for the following crop.

2.2 Catch cropping after harvest, standard (H 2)

Environmental target:

reduction of N-leaching over winter, accumulation of N in biomass

Target area:

parcel scale

Management conditions	Explanations and recommendations				
sow legume-free ground cover by 5 th of September	to avoid biological N-fixation leguminous plants are excluded, winter-hardy plants conserve N over winter, to achieve a positive environmental impact it is essential to have a good growth of the catch crop				
N fertiliser: max. 40 kg creditable N for green manure, max. 80 kg creditable N for use as fodder (with removal)	a renouncement of N-fertilisation in autumn is recommended for water protection reasons, especially if catch crops are not harvested				
after rape, maize and potatoes no N- fertilisation for catch crop	after these crops enough N remains in the soil, so that no N fertilisation is necessary to assure a good growth of catch crops				
no grazing	to prevent hot-spots of N losses due to animal excrements				
ploughing not before 1 st of February	avoidance of the release of the N captured in the biomass from catch crop before winter recommendation: ploughing not earlier than three weeks before sowing of the following crop				
existing fallow with legume-free ground cover without ploughing before spring also counts as catch crop	For a positive effect on N-surplus it is necessary to include N-fertilisation of the catch crop into the fertilising plan for crop rotation, unless the catch crop is harvested				
Reference situation without measure (for impact assessment)					
uncultivated field before summer crops (ploughed in autumn or non-returning tillage of the stubble field)					

Assessment of suitability: +++ = very good, ++ = good, + = modest, 0 = unapt

Site condition (soil/cli	mate)	Farm type / organic N-input			Land use	
sandy soil, < 600 mm	+	arable	(< 40 kg N/ha)	++	arable	++
sandy soil, >= 600 mm	++	pigs/po	ultry (40-120 kg N/ha)	++	grassland	0
loamy soil, < 600 mm	+	pigs/po	ultry (> 120 kg N/ha)	++	permanent crops	0
loamy soil, >= 600 mm	++	dairy	(40-120 kg/ha)	++	vegetables	++
peatland, organic soil	+	dairy	(>120 kg N/ha)	++		

Specification of land suitablity: on arable land before summer crops; prior crop harvested before end of August

Payment [€/ha]	Indicators	Reduct	Reduction [kg N/ha]		Cost-effectiveness [€/kg		[€/kg N]
		min.	Ø	max.	min.	Ø	max.
80 N balance		0	20	40	2	4	99999
80	soil mineral N autumn	20	40	60	1.3	2	4
implementation c	other en	vironm	ental im	pacts			
acceptance +++		climate protection					+
possibility to control ++		landscape and nature conservation					++
possibility to administrate +++		soil protection, erosion control					+++

Comments: If the catch crops are well established, the measure has an assured positive effect on soil mineral N in autumn, especially on sandy soils and not too heavy soils in regions with enough water availability in autumn. Catch crop growing reduces the quantity of the leachate. The suitability is influenced by the length of the vegetation period, among others dependent on altitude. An increase of the N surplus can not be excluded, because it is difficult to control whether the N conserved by the catch crops is taken into account in the fertilising plan for the following crop.

2.3 **Three-year fallow with active greening (H 3)**

Environmental target:

reduction of N leaching through renouncement of tillage and accumulation of N in biomass over a long period

Target area:

parcel scale

Management conditions	Explanations and recommendations				
sow winter-hardy grasses as pure stand or as variety-mixtures by 5 Sept. 2006	to achieve a positive environmental impact it is essential to have a good growth and a permanent ground cover				
only land cropped in 2006 is accepted for establishment of the three-year fellow	limitation to land cropped in the year before starting with fallow to avoid tillage and grass sowing on already established fallow/set-aside and to avoid windfall profits, because of already existing voluntary set-aside				
ploughing not before 1 st of February 2009	avoidance of the release of the N captured in the biomass and in the root zone before winter				
	recommendation: ploughing not earlier than three weeks before sowing of the following crop				
no N-fertilisation	impoverishment of soil fertility of the arable land				
no grazing	to prevent hot-spots of N losses due to animal excrements				
Reference situation without measure (for impact assessment)					
arable land use with low productivity					

Assessment of suitability: +++ = very good, ++ = good, + = modest, 0 = unapt

ate)	Farm type / organic N-in	Land use		
+++	arable (< 40 kg N/ha)	+++	arable	+++
+++	pigs/poultry (40-120 kg N/ha)	+++	grassland	0
+++	pigs/poultry (> 120 kg N/ha)	+++	permanent crops	0
+++	dairy (40-120 kg/ha)	+++	vegetables	+++
+++	dairy (>120 kg N/ha)	+++		
-	+++ +++ +++ +++	+++ arable (< 40 kg N/ha) +++ pigs/poultry (40-120 kg N/ha) +++ pigs/poultry (> 120 kg N/ha) +++ dairy (40-120 kg/ha)	+++ arable (< 40 kg N/ha)	+++arable(< 40 kg N/ha)+++arablepigs/poultry (40-120 kg N/ha)+++grassland+++pigs/poultry (> 120 kg N/ha)+++permanent crops+++dairy(40-120 kg/ha)+++dairy(>120 kg N/ha)+++

Specification of land suitablity: on arable land before summer crops; prior crop harvested before end of August

Payment [€/ha]	Indicators	Reduction [kg N/ha]			Cost-effectiveness [€/kg N]		
		min.	Ø	max.	min.	Ø	max.
120 N balance		40	60	80	0.7	2	3
120	soil mineral N autumn	30	50	70	1.7	2.4	4
implementation of	other er	nvironn	nental im	pacts			
acceptance	+	climate p	rotection	n			++
possibility to control +++		landscape and nature conservation					+++
possibility to administrate +++		soil protection, erosion control					+++

Comments: Measure with a high ecologic efficiency compared to arable land use (especially with increasing proportion of crops for renewable energy use), because of high effectiveness and reliability of the measure with relatively low cost. Additional fallow land is dependent from payment level, productivity of the land and the competitiveness of other crops (partly dependent from framework conditions like commodity prices and subsidies for biomass crops). In dry regions the sufficient growth of grass could be a problem.

2.4 Volunteer rye or triticale before summer crops (H 4)

Environmental target:

inhibition of N mineralization through renouncement of tillage (or shallow tillage), accumulation of N in biomass

Target area:

parcel scale

Management conditions	Explanations and recommendations				
single shallow tillage only immediately after harvesting	to allow a good establishment of the volunteer seedlings a shallow cultivation is permitted, but not obligatory				
no N-fertiliser	enough N remains in the soil, so that no N fertilisation is necessary to assure a good growth of volunteer rye or triticale				
no grazing	to prevent hot-spots of N losses due to animal excrements				
ploughing not before 1 st of February	avoidance of the release of the N captured in the biomass and in the root zone before winter				
	recommendation: ploughing not earlier than three weeks before sowing of the following crop				
	impoverishment of soil fertility of the arable land				
	to prevent hot-spots of N losses due to animal excrements				
	to have a positive effect on the N balance the N content of volunteer cereals has to be included in the crop rotation fertiliser plan				
Reference situation without measure (for impact assessment)					
ploughing of the stubble field					

Assessment of suitability: +++ = very good, ++ = good, + = modest, 0 = unapt

Site condition (soil/climate)		Farm type / organic N-input			Land use		
sandy soil, < 600 mm	+++	arable	(< 40 kg N/ha)	+++	arable	+++	
sandy soil, >= 600 mm	+++	pigs/po	pigs/poultry (40-120 kg N/ha)		grassland	0	
loamy soil, < 600 mm	+++	pigs/po	pigs/poultry (> 120 kg N/ha)		permanent crops	0	
loamy soil, >= 600 mm	+++	dairy	(40-120 kg/ha)	+++	vegetables	+++	
peatland, organic soil	+++	dairy	(>120 kg N/ha)	+++			
Specification of land suitablity: on arable land before summer crops: prior crop harvested before							

Specification of land suitablity: on arable land before summer crops; prior crop harvested before end of August

Payment [€/ha]	Indicators	Reduction [kg N/ha]			Cost-effectiveness [€/kg N]				
		min.	Ø	max.	min.	Ø	max.		
30	N balance	0	10	30	1	1.5	∞		
50	soil mineral N autumn	20	30	40	0.8	1	1.5		
implementation co	implementation conditions			other environmental impacts					
acceptance	++	climate p	rotection	ı			++		
possibility to control	ity to control +++		landscape and nature conservation						
possibility to administrate +++		soil protection, erosion control					+++		

Comments: This measure directly compete with catch crop growing that has a better ecologic effect on the reduction of the soil mineral N in autumn. But especially in regions with little rainfall it is an alternative to the usual intensive tillage of stubble fields.

2.5 No soil tillage/ploughing in autumn after maize/sugar-beet (H 5)

Environmental target: reduction of N losses over wintertime through renouncement of tillage before spring

Target area:

parcel scale

Management conditions	Explanations and recommendations					
no soil management after harvesting of maize/ sugar-beet before 1 st of March	reduction and retardation of the mineralization by prolongation of time the soil remains untilled until spring, but problems with the European corn borer or fusarium could occur					
use of herbicides in spring is permitted	avoids intensive tillage with high mineralization potential and improves the acceptance of the measure					
Reference situation without measure (for impact assessment)						
tillage after maize, ploughing before winter						

Assessment of suitability: +++ = very good, ++ = good, + = modest, 0 = unapt

Site condition (soil/cli	mate)	Farm type / organic N-input			Land use		
sandy soil, < 600 mm	++	arable	(< 40 kg N/ha)	++	arable	+++	
sandy soil, >= 600 mm	++	pigs/po	ultry (40-120 kg N/ha)	++	grassland	0	
loamy soil, < 600 mm	+	pigs/po	ultry (> 120 kg N/ha)	+++	permanent crops	0	
loamy soil, >= 600 mm	++	dairy	(40-120 kg/ha)	++	vegetables	0	
peatland, organic soil	+	dairy	(>120 kg N/ha)	+++			
Specification of land suitablity: in regions with low rainfalls in the late summer							

Payment [€/ha]	Indicators	Reduction [kg N/ha]			Cost-effectiveness [€/kg N]		
		min.	Ø	max.	min.	Ø	max.
25	N balance	0	5	10	2.5	5	~
25	soil mineral N autumn	0	10	20	0.8	2.5	∞
implementation c	onditions	other environmental impacts					
acceptance	++	climate protection					++
possibility to control +++		landscape and nature conservation					+++
possibility to administrate +++		soil protection, erosion control					+++

Comments: In some regions it is common to renounce to soil tillage after maize harvest, thus windfall profits could be quite important.

2.6 **Restrictions for farm manure application in autumn (H 6)**

Environmental target:

improvement of N use efficiency by substitution of mineral fertilisers and reduction of N losses over winter time

Target area:

farm scale

Management conditions	Explanations and recommendations					
application of slurry, liquid manure, poultry droppings, fermentation substrates and other organic secondary raw material fertilisers after harvesting on all cropped land only to catch crop or winter rape until 15 th of September	only when the applied organic fertiliser N can be taken up into biomass before winter high soil mineral N values can be avoided; the limitation of the application until 15 th of September instead of the 1 st of November (arable) or the 15 th of November (grassland) assures a good uptake and thus avoids excess supply in autumn; the earliest application in spring is the 1 st of February following the restrictions of the fertilising ordinance					
above mentioned organic fertiliser on grassland until 31 st of September	the vegetation period of grassland is longer and the risk of N losses is lower, therefore the period fixed for manure application on grassland is 2 weeks longer in autumn than for arable land					
measure restricted to farms using more than 100 kg N of the specified farm internal organic fertilisers per hectare of agricultural land, where as contracts to supply organic fertiliser from third parties count as "farm- internal"	the measure targets farms with a high amount of organic fertilisers, because especially they usually apply manure on stubble fields and have high values for soil mineral N in autumn; import of organic fertiliser is treated like the own manure to take into account transfers between farms (e.g. exchange of pig slurry against dairy slurry and vice versa)					
Reference situation without measure (for impact assessment)						

spreading of organic fertilisers following the guidelines of the good agricultural practice (e.g. up to 80 kg N /ha on stubble fields and less restricted time period

Site condition (soil/cli	mate)	Farm type / organic N-input			Land use		
sandy soil, < 600 mm	+++	arable	(< 40 kg N/ha)	0	arable	+++	
sandy soil, >= 600 mm	+++	pigs/por	ultry (40-120 kg N/ha)	++	grassland	++	
loamy soil, < 600 mm	+	pigs/por	ultry (> 120 kg N/ha)	+++	permanent crops	+	
loamy soil, >= 600 mm	++	dairy	(40-120 kg/ha)	++	vegetables	0	
peatland, organic soils	+++	dairy	(>120 kg N/ha)	+++			

Specification of land suitablity: in regions with a high portion of organic fertilisers

Payment [€/ha]	Indicators	Reduction [kg N/ha]			Cost-effectiveness [€/kg N]			
		min.	Ø	max.	min.	Ø	max.	
15	N balance	10	15	40	0.6	1.7	2.5	
15	soil mineral N autumn	10	15	20	0.8	1	1.5	
implementation c	onditions	other environmental impacts						
acceptance	++	climate protection					++	
possibility to control ++		landscape and nature conservation					0	
possibility to administrate +		soil protection, erosion control					+	

Comments: The measure aims to improve the on-farm organic fertiliser management. Fallow land (non fertilised) is excluded from the payment. The above mentioned N reduction is an average over all arable and grassland uses. There is a possibility of double support in combination with catch crop growing. The export of manure to other farms in the neighbourhood is not excluded. This can abolish the effect at regional level. An extension of the minimum storage capacities for slurry (by the year 2009 6 months) has a similar effect like this measure. The measure rewards the renouncement of manure application on stubble fields with no rape or catch crop follwing in autumn, and of late application on grassland.

2.7 **Improved slurry application techniques (H 7)**

Environmental target:

improvement of N use efficiency by substitution of mineral fertilisers

Target area:

parcel scale

Management conditions	Explanations and recommendations						
application of slurry and fermentation substrates in spring/summer (from 1 st of February to 15 th of July) with drag hoses, trailing shoes or injection technique in growing winter cereals, winter rape and on grassland/ ley farming	Targets a replacement/ reduction of mineral fertiliser in winter cereals and winter rape in spring as well as an improved organic fertilisation of grassland (avoids gaseous losses, surface run-off and by the way a better use of the slurry N)						
for application with contractors the evidence has to be present; for self-application a record about slurry quantities and surface has to exist							
Reference situation without measure (for impact assessment)							
spreading of slurry with usual technology (broadcast)							

Assessment of suitability: +++ = very good, ++ = good, + = modest, 0 = unapt

Site condition (soil/cli	Farm type / organic N-input			Land use		
sandy soil, < 600 mm	+++	arable	(< 40 kg N/ha)	0	arable	+++
sandy soil, >= 600 mm	+++	pigs/por	ultry (40-120 kg N/ha)	++	grassland	++
loamy soil, < 600 mm	+	pigs/por	ultry (> 120 kg N/ha)	+++	permanent crops	+
loamy soil, >= 600 mm	++	dairy	(40-120 kg/ha)	++	vegetables	0
peatland, organic soils	++	dairy	(>120 kg N/ha)	+++		

Specification of land suitablity: growing cereals and growing rape (drag hoses, injection), grassland and ley farming (trailing shoes)

Payment [€/ha]	Indicators	Reduction [kg N/ha]			Cost-effectiveness [€/kg N]				
		min.	Ø	max.	min.	Ø	max.		
25-35*	25.35* N balance		15	40	0.6-0.9	1.7-2.3	2.5-3.5		
25-55	soil mineral N autumn	0	10	20	1.3-1.8	2.5-3.5	~		
implementation c	implementation conditions			other environmental impacts					
acceptance	+++	climate protection					+++		
possibility to control +++		landscape and nature conservation					+		
possibility to administrate ++		soil protection, erosion control					0		

* 25 €/ha for drag hoses, 35 €/ha for trailing shoes or injection

Comments: The slurry application can be done to a greater surface in spring with improved application technique. Today the technique is dominated by drag hoses on arable land and trailing shoes on grassland. Injection technique is up to now used on a very small share. Only if mineral fertiliser is replaced by improved slurry application (especially for fertilisation in spring) a positive effect on the N balance can be achieved. On grassland it is important to have a dry matter fraction under 8 % to avoid application problems.

2.8 Reduced row spacing for maize (H 8)

Environmental target: improvement of N uptake by the maize plants, increase of N use efficiency

Target area:parcel scale

Explanations and recommendations					
the plants are more evenly distributed and cover the soil earlier, this allows a better uptake of N; especially suitable for silage maize (and for biomass production)					
enough N remains in the soil, so that no N fertilisation is necessary for a good decomposition of the maize stubble; no N fertilisation is necessary even if a late winter crop is following					
this management condition is due to the WAgriCo project approach and allows to get data for a with-without comparison of soil mineral N content in autumn					
recommendation to limit the N-fertilisation to max. 140 kg/ha					
Reference situation without measure (for impact assessment)					

Silage maize with usual row spacing (75 cm)

Assessment of suitability: +++ = very good, ++ = good, + = modest, 0 = unapt

Site condition (soil/climate)		Farm type / organic N-input			Land use		
sandy soil, < 600 mm	++	arable	(< 40 kg N/ha)	++	arable	+++	
sandy soil, >= 600 mm	++	pigs/po	ultry (40-120 kg N/ha)	++	grassland	0	
loamy soil, < 600 mm	+	pigs/po	ultry (> 120 kg N/ha)	++	permanent crops	0	
loamy soil, >= 600 mm	++	dairy	(40-120 kg/ha)	+++	vegetables	0	
peatland, organic soils	+	dairy	(>120 kg N/ha)	+++			
Specification of land suitablity: also suitable to reduce erosion on sloped plots							

Payment [€/ha]	Indicators	Reduction [kg N/ha]			Cost-effectiveness [€/kg N]		
		min.	Ø	max.	min.	Ø	max.
40	10 N balance		10	20	2	4	8
-10	soil mineral N autumn	0	10	15	2.7	4	∞
implementation c	onditions	other e	nvironi	mental im	pacts		
acceptance	+	climate j	protectio	n			0
possibility to control	l ++	landscape and nature conser			rvation		0
possibility to admini	strate +++	soil protection, erosion control +-			++		

Comments: The impact assessment for this measure is ambiguous so far, but the effectiveness increases for low / suboptimal N fertilisation. Therefore it is suitable to combine the reduced row spacing of maize with a limited N fertilisation and reduced tillage after harvest (to reduce mineralization).

2.9 Use of ammonium based liquid fertilisers using injection technique in cereals (H 9)

Environmental target: reduction of N losses and increase of N use efficiency by creation of ammonium depots

Target area:

parcel scale

Management conditions	Explanations and recommendations					
application of the injection technique for liquid mineral nitrogen fertilisation before stem elongation of the cereals (once or twice)	avoidance of N losses in spring, increase of the N use efficiency; it is allowed to use other N fertilisers for the corn filling period (for high-protein wheat)					
solely use of injection technique until 15 th of May; P and K fertilisation can be done in the conventional way	change to an ammonium based N uptake of the plants is only possible if no other N fertilisers are applied					
no organic fertilisation from sowing until harvest, then only in autumn;	field trials showed that the ammonium uptake is much better from soils without organic N fertilisation					
an evidence for use of injection technique has to be provided						
Reference situation without measure (for impact assessment)						
Application of mineral fertiliser with the usual technique						

Assessment of suitability: +++ = very good, ++ = good, + = modest, 0 = unapt

Site condition (soil/clin	Farr	n type / organic N-in	Land use			
sandy soil, < 600 mm	++	arable	(< 40 kg N/ha)	+++	arable	+++
sandy soil, >= 600 mm	++	pigs/po	ultry (40-120 kg N/ha)	+++	grassland	0
loamy soil, < 600 mm	+	pigs/por	ultry (> 120 kg N/ha)	+	permanent crops	0
loamy soil, >= 600 mm	+	dairy	(40-120 kg/ha)	++	vegetables	+++
peatland, organic soils	0	dairy	(>120 kg N/ha)	+		

Specification of land suitablity: especially suitable for nutrient-poor, sandy soils with application of the injection technique once or twice at the beginning of the vegetation period

Payment [€/ha]	Indicators	Reduction [kg N/ha]			Cost-effectiveness [€/kg N]		
		min.	Ø	max.	min.	Ø	max.
35	N balance	0	10	20	1.8	3.5	8
	soil mineral N autumn	0	10	20	1.8	3.5	∞
implementation co	onditions	other en	vironm	ental im	pacts		
acceptance	++	climate pr	rotection				+
possibility to control	ssibility to control +++		landscape and nature conservation				0
possibility to adminiz	strate ++	soil protection, erosion control			0		

Comments: The application in spring helps to reduce N losses in the early vegetation period and leads to a reduction of the N surplus by a better N use efficiency. Field trials have shown a reduction of the N use efficiency compared to the conventional N fertilisation, if bad growing conditions occur after a sole N application with the N injection technique as well as in situations where the available N is not fully used by the plants. The measure aims to stabilise the yield. In vegetables better qualities with lower nitrate values are produced using ammonium based injection technique.

2.10 Application of stabilised mineral fertilizer in spring on winter cereals and potatoes (H 10)

Environmental target: increase of N use efficiency by adaptation of the N supply to the needs

Target area:

parcel scale

Management conditions	Explanations and recommendations						
use of stabilised mineral nitrogen fertiliser, for potatoes in the formula of ammonium	avoidance of N losses in spring, increase of the N use efficiency, the risk of a high supply of N in times when the plants have only a little need is lower when stabilised mineral fertiliser are used						
solely use of stabilised fertiliser in spring until 15 th of May	the N use efficiency is influenced negatively if other N fertilisers are used in addition to the stabilised one						
if use of organic fertilisers, then only in autumn							
purchase (expense) voucher as evidence							
Reference situation without measure (for impact assessment)							
Application of mineral fertilizer with the usual technique							

Application of mineral fertiliser with the usual technique

Assessment of suitability: +++ = very good, ++ = good, + = modest, 0 = unapt

Site condition (soil/clin	Farm type / organic N-input			Land use		
sandy soil, < 600 mm	++	arable	(< 40 kg N/ha)	++	arable	+++
sandy soil, >= 600 mm	++	pigs/por	ultry (40-120 kg N/ha)	++	grassland	0
loamy soil, < 600 mm	+	pigs/por	ultry (> 120 kg N/ha)	+	permanent crops	0
loamy soil, >= 600 mm	+	dairy	(40-120 kg/ha)	++	vegetables	+
peatland, organic soils	0	dairy	(>120 kg N/ha)	+		

Specification of land suitablity: especially suitable for nutrient-poor, sandy soils with application once at the beginning of the vegetation period

Payment [€/ha]	Indicators	Reduction [kg N/ha]			Cost-effectiveness [€/kg N]		
		min.	Ø	max.	min.	Ø	max.
25	N balance	0	10	20	1.2	2.5	8
25	soil mineral N autumn	0	10	20	1.2	2.5	∞
implementation co	nditions	other er	nvironm	nental im	pacts		
acceptance	++	climate p	rotectior	1			+
possibility to control	++	landscape and natu		ape and nature conservation			0
possibility to adminis	trate ++	soil protection, erosion control 0			0		

Comments: The application in spring aims at reduction of N losses in spring and thus the reduction of the N surplus. The measure shall also stabilise the yield. It is quite difficult to manage a well adapted N supply to reach the optimal yields. The environmental effects are much better if the use of stabilised N fertilisers is combined with a reduced N fertilisation.

2.11 Undersown catch crops in maize (H 11)

Environmental target: reduction of N-leaching over winter, long storage of N in biomass

Target area:

parcel scale

Management conditions	Explanations and recommendations					
Sow grasses as pure stand or as variety- mixtures (legume-free) as undersown crops in silage maize	to avoid biological N-fixation leguminous plants are excluded					
no N-fertilisation after maize harvesting until 1 st of February	the sowing technique is essential for a good growth of the grass and thus for a positive the environmental effect					
earliest ploughing in the following year from 1 st of February	avoidance of the release of the N stored in the biomass of catch crop before winter					
no grazing	to prevent hot-spots of N losses due to animal excrements					
Reference situation without measure (for impact assessment)						
ploughing in autumn before summer crop						

Assessment of suitability: +++ = very good, ++ = good, + = modest, 0 = unapt

Site condition (soil/clin	Farm type / organic N-input			Land use			
sandy soil, < 600 mm	0	arable	(< 40 kg N/ha)	+	arable	++	
sandy soil, >= 600 mm	++	pigs/pot	ultry (40-120 kg N/ha)	++	grassland	0	
loamy soil, < 600 mm	0	pigs/pou	ultry (> 120 kg N/ha)	+++	permanent crops	0	
loamy soil, >= 600 mm	++	dairy	(40-120 kg/ha)	++	vegetables	0	
peatland, organic soils	++	dairy	(>120 kg N/ha)	+++			
Specification of land suitablity: needs enough rainfall, especially in late summer							

Payment [€/ha]	Indicators	Reduction [kg N/ha]			Cost-effectiveness [€/kg N]		
		min.	Ø	max.	min.	Ø	max.
125	N balance		10	20	6.3		∞
125	soil mineral N autumn	10	20	40	3.1	6.3	12.5
implementation co	onditions	other en	nvironm	nental in	pacts		
acceptance	+	climate p	rotectior	1			+
possibility to control	++	landscap	e and nat	ture conse	rvation		++
possibility to adminis	strate +++	soil prote	ection, er	osion cor	trol		+++

Comments: For this measure a good timing and a well adapted technique for sowing the grass is essential. A better acceptance is possible if contractors are responsible for the sowing of the grass into the maize. If the maize is harvested late, especially in combination with dry climate conditions in late summer, a total loss of the undersown crops is possible. On the other side, if the undersown crops grow to well there is the risk of maize yield losses, because of water and nutrient competition. Those difficulties explain the until now low acceptance rate of this measure in practice. If well practiced the environmental effects are similar to those of winter-hardy catch crops. Another problem to cope with is the risk of injuries and the need to adapt the use of herbicides. An increase of the N surplus could not be excluded, because it is difficult to control if the preserved N is taken into account for the following crop if the grass is not harvested.

2.12 Turnip (brassica rapa sylvestris) as catch crop before winter cereals (H 12)

Environmental target: reduction/avoidance of N leaching over winter, storage of N in biomass and in the root zone

Target area:

parcel scale

Management conditions	Explanations and recommendations				
sow catch crop by 15 th of August	to accumulate N in the root zone of the turnip and to achieve a high N uptake it is essential that the growing period is long enough, therefore it is necessary that the catch crop is sown as quick as possible after harvest of the previous crop				
use 10-12 kg of sowings	to reach a quick and good coverage of the soil a high number of plants is necessary				
no N fertilisers to the turnip and the following winter cereals in autumn	enough N remains in the soil (previous crop in general cereals or rape), so that no N fertilisation is necessary to assure a good growth of turnip and following winter cereals				
ploughing not before 10 th of October	the shorter the time period between ploughing of the catch crop and sowing of the following cereal the lower the N losses in autumn				
Reference situation without measure (for impact assessment)					
tillage of stubble field with winter cereals following					

Assessment of suitability: +++ = very good, ++ = good, + = modest, 0 = unapt

Site condition (soil/cli	Farm type / organic N-input			Land use		
sandy soil, < 600 mm	++	arable	(< 40 kg N/ha)	++	arable	++
sandy soil, >= 600 mm	++	pigs/po	pigs/poultry (40-120 kg N/ha)		grassland	0
loamy soil, < 600 mm	+	pigs/po	pigs/poultry (> 120 kg N/ha)		permanent crops	0
loamy soil, >= 600 mm	++	dairy	(40-120 kg/ha)	++	vegetables	++
peatland, organic soils	+	dairy	(>120 kg N/ha)	++		
Specification of land suitablity: on arable land before winter crops; harvest of previous crop until						
end of July						

Payment [€/ha]	Indicators	Reduction [kg N/ha]			Cost-effectiveness [€/kg N]		
		min.	Ø	max.	min.	Ø	max.
60	N balance	0	10	20	3		8
00	soil mineral N autumn	20	30	40	1.5	2	3
implementation co	nditions	other en	vironm	nental im	pacts		
acceptance	++	climate p	rotectior	1			+
possibility to control	++	landscape and nature conse			rvation		++
possibility to adminis	trate +++	soil protection, erosion control ++-			+++		

Comments: There is only little experience with that measure, but monitoring of soil mineral N in autumn shows a good environmental effect. N storage in the turnip roots means slower mineralization compared to catch crops storing N mainly in the leaves and stalks which are more quickly decomposed after tillage. If well managed and if the temperature is not high after sowing the winter cereals the N mineralization in autumn is quite low, while high temperature in winter is negative. Turnip needs enough water in late summer/early autumn and reduces the leachate. The suitability is influenced by the length of vegetation time dependent from the altitude.

2.13 Reduced tillage of volunteer rape seedlings before winter cereals respectively summer crops (H 13)

Environmental target: reduction of N losses and reduction of N mineralization

Target area:parcel scale

Management conditions	Explanations and recommendations				
after harvesting no tillage or immediately after harvest single shallow cultivation	to allow a good establishment of the volunteer seedlings a shallow cultivation is permitted, but not obligatory				
no N-fertiliser	enough N remains in the soil, so that no N fertilisation is necessary to assure a good growth of volunteer rape seedlings				
no grazing	to prevent hot-spots of N losses due to animal excrements				
if summer crops are following ploughing not before 15 th of March; for winter cereals no ploughing before 1 st of October	minimizing the period of time without plants on the ground for a secure uptake of the N captured in the biomass of the volunteer rape until the following crop				
before winter cereals use of herbicides from 10 th of September allowed	the use of herbicides avoids an intensive tillage of the soil that may cause high N mineralization and makes it possible to use direct seeding technique				
	recommendation: N content of volunteer rape has to be included in the fertilising plan for follwing crops				
Reference situation without measure (for impact assessment)				
tillage of stubble field after rape and ploughing before following crop (winter cereals)					

Assessment of suitability: +++ = very good, ++ = good, + = modest, 0 = unapt

Site condition (soil/clin	Farm type / organic N-input			Land use		
sandy soil, < 600 mm	+	arable	(< 40 kg N/ha)	++	arable	+++
sandy soil, >= 600 mm	++	pigs/por	ultry (40-120 kg N/ha)	++	grassland	0
loamy soil, < 600 mm	+	pigs/por	ultry (> 120 kg N/ha)	+++	permanent crops	0
loamy soil, >= 600 mm	++	dairy	(40-120 kg/ha)	++	vegetables	0
peatland, organic soils	+	dairy	(>120 kg N/ha)	+++		
Specification of land suitablity: suitable for crop rotations with rape and winter cereals						

Payment [€/ha]	Indicators	Reduction [kg N/ha]			Cost-effectiveness [€/kg N]		
		min.	Ø	max.	min.	Ø	max.
40	N balance	0	15-20*	30-40*	1.3-1	2.7-2	8
10	soil mineral N autumn	0	10	40	1	4	~
implementation co	nditions	other e	nvironme	ental imp	acts		
acceptance	+	climate j	protection				+
possibility to control	+++	landscape and nature conservation				+	
possibility to adminis	trate ++	soil protection, erosion control ++				++	

* 15 kg N/ha (average) or 30 kg N/ha (maximum) for winter crops following the measure and 20 kg N/ha (average) or 40 kg N/ha (maximum) for summer crops

Comments: Especially in regions with little or insecure rainfall it is an alternative to catch crop growing.

2.14 Result-oriented measure to improve N use efficiency (E)

Environmental target: improved N fertiliser management at farm scale

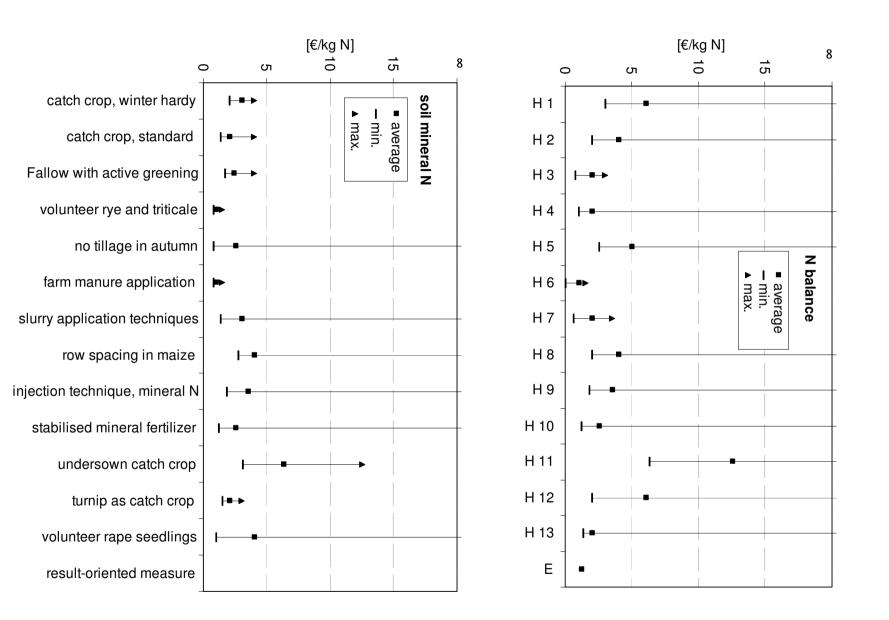
Target area:

-		
farm	scale	

Management conditions	Explanations and recommendations
no specific management conditions besides to consistently provide data of nitrogen	farm specific N management adaptations instead of detailed prescriptions
input and output at farm level in order to allow a documentation of the N balances	recommendations: elaborate a fertiliser plan (using EDV technique) on parcel level to have an overview over the on farm N management and to detect possibilities to reduce fertiliser input analysis of soil mineral N in spring to take N reserves into account, for maize, sugar beet and vegetables in the late
Reference situation without measure (spring analysis of the slurry before spreading to know the N content

three-year average of the N balances in the years before participation / *planned*: reference levels for N use efficiency (calculated separately for organic and mineral fertilisers)

Assessment of suitability: +++ = very good, ++ = good, + = modest, 0 = unapt


Site condition (soil/climate)			Farm type / organic N-input		
+++	arable	(< 40 kg N/ha)	+++	arable	+++
+++	pigs/po	pigs/poultry (40-120 kg N/ha)		grassland	+++
+++	pigs/por	ultry (> 120 kg N/ha)	+++	permanent crops	+++
+++	dairy	(40-120 kg/ha)	+++	vegetables	+++
+++	dairy	(>120 kg N/ha)	+++		
	+++ +++ +++ +++	+++ arable +++ pigs/por +++ pigs/por +++ dairy	+++ arable (< 40 kg N/ha) +++ pigs/poultry (40-120 kg N/ha) +++ pigs/poultry (> 120 kg N/ha) +++ dairy (40-120 kg/ha)	+++ arable (< 40 kg N/ha) +++ +++ pigs/poultry (40-120 kg N/ha) +++ +++ pigs/poultry (> 120 kg N/ha) +++ +++ dairy (40-120 kg/ha) +++	+++arable(< 40 kg N/ha)+++arable+++pigs/poultry (40-120 kg N/ha)+++grassland+++pigs/poultry (> 120 kg N/ha)+++permanent crops+++dairy(40-120 kg/ha)+++vegetables

Specification of land suitablity: all farms are suited for a participation, thus actually focus lays on arable and grassland use

Payment [€/ha]	Indicators	Reduction [kg N/ha]			Cost-effectiveness [€/kg N]	
		min.	Ø	max.		
0 - 40	Reduced N surplus (through increased N use efficiency)	0		33.3*	1.2	
implementation co	nditions	other environmental impacts				
acceptance	++	climate pr	otection		+++	
possibility to control	+	landscape	and natu	re conserv	vation ++	
possibility to adminis	trate ++	soil protec	ction, ero	sion contr	rol 0	

* Payment limited to a maximum of $40 \in$ / ha, so that only a reduction of up to 33.3 kg N/ha is rewarded, although the real reduction could be higher.

Comments: Until now only little experience with the result-oriented approach exists. In the WAgriCo project the measure is tested as top-up payment to the 13 action-oriented measures. All project farmers agreed to participate. A reliable and consistent nutrient accounting system is a must. To improve the acceptance this measure has to be supported by technical advice, at least in the beginning. As there exists no benchmarking, in the WAgriCo project it was agrred to reward the improvement of N use efficiency (calculated separately for organic and mineral fertilisers). In future it is planned to reward only N use efficiencies above a fixed reference level. A realistic setting of this reference level shall be derived from project data and discussed during the ongoing project.

The figure 1 shows that there is a high uncertainty about cost-effectiveness of the selected measures. Nevertheless, there are some measures with a quite secure result to reduce soil mineral N, like catch crop growing. By the same time, for this group of measures the effect on N surplus depends mainly on fertiliser management in the following year, which again implies uncertainties about effects in following years.

Table 2 contains a summary of the payments and the expected values of average N reduction that could be obtained. It has to be considered that the N reduction potentials are indicated for good conditions concerning the selection of site, farm type and land use, and for 'good practice' implementation of the measures. On basis of this information the average cost-effectiveness of the 13 measures was calculated. For the result-oriented measure the cost-effectiveness is directly represented by the reward per kg N, while the possible N reduction varies within the range defined for remuneration (5-33 kg N/ha). The result-oriented measure (E) may also have a positive effect on soil mineral N in autumn, but this effect is not quantified here, as it depends on the specific situation of the farm and the management adaptations selected.

No	Name	Payment [€/ha*a]	Average N reduction [kg N/ha*a]		effi	age cost- ciency kg N]
			N	Soil mineral N	N balance	Soil mineral N
			balance	mineral N	Dalance	mineral N
H 1	catch crop, winter hardy	120	20	40	6	3
H 2	catch crop, standard	80	20	40	4	2
Н3	Fallow with active greening	120	60	50	2	2.4
H 4	volunteer rye and triticale	30	15	30	2	1
Н 5	no tillage in autumn	25	5	10	5	2.5
H 6	farm manure application	15	15	15	1	1
Η 7	slurry application techniques	30	15	10	2	3
H 8	row spacing in maize	40	10	10	4	4
H 9	injection technique, mineral N	35	10	10	3.5	3.5
H 10	stabilised mineral fertilizer	25	10	10	2.5	2.5
H 11	undersown catch crop	125	10	20	12.5	6.25
H 12	turnip as catch crop	60	10	30	6	2
H 13	volunteer rape seedlings	40	20	10	2	4
Е	result-oriented measure	6 - 40	5 - 33	_	1.2	-

Table 2: Average N-reduction and cost-efficiency of single WAgriCo-measures

3 Ranking of WAgriCo measures offered in Lower Saxony

There is not one single solution for a cost-effective planning of measures as in practice for the measure selection more than one criterion has to be considered and the aspects could vary from one catchment or river basin to another. Therefore different rankings of the fourteen water protection measures are presented.

The easiest one is the ranking where only one aspect is considered: the costefficiency of the reduction of soil mineral N or of N surplus reduction. The necessary information can be found on the measure sheets. In the ranking example is ranked equal to a median effect of all 13 measures (see table 3). This simple ranking allows to exclude measures that are unsuitable and to make a short list of measures that have to be considered in detail. It can be used as a starting point for further selection.

Another ranking approach presented shows how to proceed if besides the costeffectiveness of the reduction of nitrogen surplus as the most important selection indicator (and the only environmental effect considered in the hydro-geological modelling approach) the add-on effects like nature and landscape protection, soil and climate protection as well as erosion and surface runoff control are taken into account in the ranking as they are important assets in certain groundwater catchments, too. In this case the methodology used for the ranking is a multi-criteria analysis where different environmental impacts are taken into account simultaneously. In the multi-criteria analysis to each criteria considered a score is given (in our case +, ++ or +++).

A differentiation taking into account their importance is possible by giving weighting factors to each criteria. In the last step the scores are aggregated, in this example by addition of the estimates of all ranking criteria. Whereas the more or less positive ecological effects (+, ++, +++) of measures can be taken directly from the measure sheets, the N reduction is taken from the ranking (ranking number 1 to 7 = +++, 8 to 11 = ++, 12 to 14 = +). A weighting is needed to emphasise the importance of N surplus mitigation. The selection of the appropriate criteria, the definition of weighting factors as well as the aggregation process could be set by groups of stakeholders, in order to increase acceptance for multi-criteria analysis with its subjective elements. In this way, the definition of the ranking procedures makes the selection of measures more comprehensible and reproducible. As the N reduction is the dominating target, lower weighting factors have been used for the other environmental impacts in our example presented in table 3.

In table 4 a third approach is presented. In a first step the measures are grouped considering their suitability per farm type and not their cost-effectiveness. In our case the decisive factor is the farm type. This is based on the fact, that there is in

general a quite good local knowledge about the dominating farm types and their contribution to N pollution. Instead of using an additive aggregation, the criteria cost-efficiency of the reduction of the N balance and the suitable farm types, the aggregation of the ranking factors is done by multiplication. This allows to consider the degree of suitability and area potential of the measures. Using this ranking methodology the measures that fit best for the particular farm type have a higher ranking than those with a less positive assessment of suitability even if their cost-effectiveness of N reduction is better.

In general, additive aggregation of ranking factors is appropriate if there are several, separate aspects evaluated, e.g. impacts on different environmental goods. Multiplicative aggregation is recommended for factors like farm type suitability, acceptance, and administrability.

Ranking	Cost- efficiency of N balance	Cost- efficiency of soil mineral N	Climate protection	nature and landscape conservation	soil protection , erosion control	Cost-efficiency of N mitigation and other ecological impacts		
1 2	H 6 E	Н 4, Н 6	H 7, E	Н 3, Н 4, Н 5,		H 3, H4		
<u> </u>	Н 3, Н 4,	H 2, H 12	Н 3, Н 4,	E	H 1, H 2, H 3, H 4, H 5, H 11,	H 5 E		
5	H 7, H 13	Н 3	Н 5, Н 6		H 12	Н б		
6 7	H 10	Н 5, Н10		H 1, H 2, H 11, H 12		H 2, H 7, H 12		
<u>8</u> 9	Н9	Н 1, Н 7	Н 1, Н 2,		H 8, H 13	H 10		
10	H 2, H 8	Н 9, Е	H 9, H 10, H 11, H 12,	Н 7, Н 13	Н 6	H 1, H 13		
11	Н 5	,2	H 13					
12 13	H 1, H 12	H 8, H 13		H 6, H 8, H 9, H 10	H 7, H 9, H 10, E	H 11 H 9		
14	H 11	H 11	H 8			H 8		
		-	1		-			
Weight	2	2	1	1	1	Σ		
Example:	Example:							
Н 7	+++ * 2	++ * 2	+++ * 1	+ * 1	0 * 1	14		
Н 13	+++ * 2	+ * 2	+ * 1	+ * 1	++ * 1	12		

Table 3: Ranking of WAgriCo measures using an additive aggregation

Ranking	Cost- efficiency of N	Arable farms	Dairy farms	Pigs/ poultry farms		ficiency of N MBINATIO	
	balance			1411115	Arable farms	Dairy farms	Pig/poultry farms
1 2 3	H 6, E, H 3, H 4,	H 3, H 4, H 9, E	H 1, H 3, H 4, H 8,	H 1, H 3, H 4, E	H 3, H 4, E	H 3, H 4, E	H 3, H 4, E
4 5 6	H 7, H 13 H 10	H 1, H 2,	E	Н 5, Н 6,	H 9, H 10, H 13	H 6, H 7, H 8, H 13	H 6, H 7, H 13
7 8 9	H 9, H 2, H 8	H 2, H 5, H 8, H 10,	H 5, H 6, H 7, H 11, H 13	H 7, H 11, H 13 H 2, H 8,	H 2, H 8	H 1	H 1
10 11	II 5 II 1	H 12, H 13	Н 2, Н 12,		H 1, H 5, H 12	H 2, H 5, H 11	H 2, H 5, H 8, H 9,
12 13	H 5, H 1, H 12, H 11	H 11 unapt:	unapt:	H 9, H 12	H 11	H 12	H 11 H 12
14		H 6, H 7	H 9, H 10	unapt: H 10	H 6, H 7	H 9, H 10	H 10
Example:			0		•	0	2
H 9 H 7	++	+++ 0	0 ++	+++	6 0	0 6	2 6

Table 4: Ranking of WAgriCo measures using a grouped aggregation

In practice there is a need of individual decisions in order to select the most appropriate measures for the given situation, which depends on site conditions (soil, rainfall), additional environmental impacts, farm type, land use and crop rotation. Other decisive criteria for the administrative body when they look for useful water protection measures are the possibility to control and to administrate the measures, and last but not least acceptance of farmers to perform water protection measures.

4 Combinations of WAgriCo measures and estimated cumulative effects in Lower Saxony

One farm can conduct several measures by the same time, either on different parcels or in the same year on the same land. In the case of different parcels, the single technical-organisational measures have effects independent from other measures. However, the optimal protective effect can often be achieved by specific combinations on the same parcel with higher reliability. In addition, the question of measure combinations is politically relevant, e.g., with regard to the question whether the measure payments are added or whether a cumulation should be excluded. There are several combinations possible between the selected fourteen measures that are both technically feasible and usual practice. A matrix of single parcel combinations of the action-oriented measures is shown in Annex 2. How far these combinations are realised, depends on the specific situation of the single farm (location, farm type etc.). In principle the measure combinations, which allow an easy integration into the present management and the existing crop rotation are more accepted by the farmers. Nevertheless, for measure combinations often higher management skills are necessary than for the implementation of one single action-oriented measure at parcel level. In order to extrapolate the measure implementation at state level and to estimate the N reduction potential as well as the resulting financial cost, an estimation of the cumulative effects of the WAgriCo measures has to be conducted. As it is not possible to estimate the cost-effectiveness of measure combinations simultaneously it is necessary to proceed in three steps. First the costs for selected measure combinations are estimated:

Costs = *target area x potential measure area x acceptance x cumulative payments.*

The environmental effectiveness of the measure combination is calculated using the quantitative information out of the measure sheet and taking into account possible combinations on plot-level (see Annex 2):

Environmental effectiveness = target area x potential measure area x cumulated effectiveness of the measure combination

Finally, to quantify the cumulative cost-effectiveness it is necessary to calculate the cost divided by the environmental effectiveness for the selected measure-combinations.

Information necessary for the estimation of the cost-effectiveness of measure combinations is the suitability of the measures in accordance with farm type and site conditions, the potential surface of each measure, and the level of expected acceptance. Table 5 contains the selected measures and distinguishes two categories: implementation possible and probable shown by "x" and implementation technically feasible, but not probable (e.g. because of water restrictions under dry conditions) shown by "(x)". The latter are not further considered. The classification is done for four farm types and five different site conditions. Selected (applicable) measures are possible to be combined within one farm unit, but for some measures not on the same parcel. A distinction is made between low and high rainfall with 600 mm precipitation per year as borderline. The second site condition considered is the soil, with sandy or loamy soils differing in sand content by more or less than 50 %. The potential surface for measure implementation has to be estimated using information about the surface of appropriate crops and crop rotations. For the parcel-related measures the surface is limited to agricultural land within the target areas. With the help of the assembled information it is possible to make a rough estimation about the possible N reduction and the cost and the resulting costeffectiveness.

Number of measure	H1	H2	Н3	H4	Н5	H6	H7	H8	H9	H10	H11	H12	H13	Е	Site condition
Land use farm type	arable land	arable-/ grass-land	arable-/ grass-land	arable land	arable-/ grass-land	-									
arable farm 1	(x)	Х	х	Х	Х				Х	Х		Х	Х	Х	sandy, low rainfall
arable farm 2	Х	Х	Х	Х	Х				Х	Х		Х	Х	Х	sandy, high rainfall
arable farm 3	(x)	Х	х	Х	Х				Х	Х		Х	Х	Х	loamy, low rainfall
arable farm 4	Х	Х	Х	Х	Х				Х	Х		Х	Х	Х	loamy, high rainfall
arable farm 5	Х	Х	х	Х	Х				Х	Х		Х	Х	Х	peatlands, org. soils
dairy farm 1	Х	Х	Х	Х	Х	Х	Х	Х	(x)	Х	(x)	Х	Х	Х	sandy, low rainfall
dairy farm 2	Х	Х	х	Х	Х	Х	Х	х	(x)	х	Х	Х	Х	Х	sandy, high rainfall
dairy farm 3	Х	Х	х	Х	Х	Х	Х	х	(x)	х	(x)	Х	Х	Х	loamy, low rainfall
dairy farm 4	Х	Х	Х	Х	Х	Х	Х	Х	(x)	Х	Х	Х	Х	Х	loamy, high rainfall
dairy farm 5	Х	Х	х	Х	Х	Х	Х	х	(x)	х	Х	Х	Х	Х	peatlands, org. soils
pigs, poultry farm 1	Х	Х	х	х	Х	Х	Х	х	(x)	х	(x)	Х	Х	Х	sandy, low rainf.
pigs, poultry farm 2	Х	Х	х	Х	Х	Х	Х	х	(x)	х	Х	Х	Х	Х	sandy, high rainfall
pigs, poultry farm 3	Х	Х	х	х	Х	Х	Х	х	(x)	х	(x)	Х	Х	Х	loamy, low rainf.
pigs, poultry farm 4	Х	Х	х	х	Х	Х	Х	х	(x)	х	х	Х	Х	Х	loamy, high rainfall
pigs, poultry farm 5	Х	Х	х	х	Х	Х	Х	х	(x)	х	Х	Х	Х	Х	peatlands, org. soils
others 1*	(x)	(x)	х						(x)	х		(x)		Х	sandy, low rainfall
others 2*	(x)	(x)	х						(x)	х		(x)		х	sandy, high rainfall
others 3*	(x)	(x)	Х						(x)	Х		(x)		Х	loamy, low rainfall
others 4*	(x)	(x)	х						(x)	Х		(x)		х	loamy, high rainfall
others *	(x)	(x)	Х						(x)	х		(x)		Х	peatlands, org. soils

Table 5: Applicable measures depending from farm type, measure-combinations on farm level

* others include permanent crop and vegetables growing

x – implementation possible and probable

(x) -implementation technically feasible, but not probable (e.g. competitive water) and therefore not considered for the cost-calculation

5 Action recommendations for priority cost-effective planning of measures

Water protection measures can be implemented through EU co-financed schemes within the Rural Development Plans, as well as independently from the EU with regional or local funding. For co-financed agri-environmental measures, the EU sets the general objectives and provides rules for administrative procedures for design and implementation. Design of measures is restricted in terms of maximum payments, calculation of payments, controllability and the duration of at least five years. For EU co-financed agri-environmental measures, the incorporation into the Integrated Administration and Control System (IACS), which was created for direct payments of the so-called first pillar of the CAP, is mandatory. This includes precision in determining the size of eligible area, and a minimum number of on-the-spot controls per measure at a rate of 5 % of beneficiaries. While the payments to the farmers are EU co-funded, administrative costs for agri-environmental programmes have to be borne entirely at the member-state level. For member states and regions with limited administrative personnel, measures with low costs for administration and control thus might be more attractive.

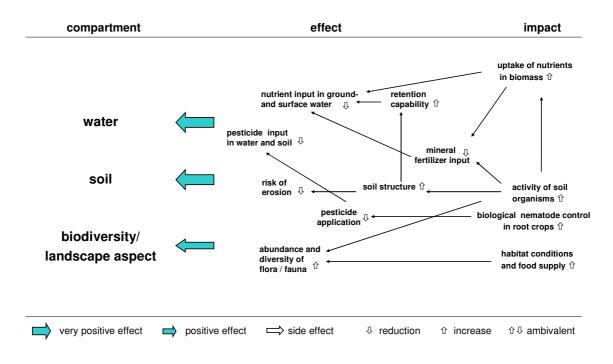
Besides co-funding of action-oriented measures it is possible to get financial support from the EU for agricultural advisory services. In the WAgriCo project is has to be futher discussed to which degree the implementation of water protection measures should be flanked by technical advice in order to reach a sufficient acceptance and good practive of measure placement and implementation. With regard to the result-oriented measure, advice and possibly auditing to verify effects on N efficiency are important elements. At least at the outset, farmers should be supported to become entrepreneurs for water protection-oriented agriculture and to develop appropriate measures tailored to their proper farm situation.

According to the rankings of WAgriCo-measures, it will be executed a costeffective planning for the pilot areas and at country scale. The result-oriented measure is paid 'on the top' within the project practical testing. That means that the payment is independent of the payments for action-oriented measures, even if they have an effect on the N-efficiency and thus on the N surplus. Within an agrienvironmental programmes, additive effects of combinations of measures should be considered, as they have impacts on cost-effectiveness and the justification of payments. Action-oriented measures that target directly the N-efficiency are thus not fully compatible with the result-oriented approach. For the result-oriented measure, the combination with action-oriented measures focussing on N-leaching in autumn, and with volunteer advisory service and an audit of mineral bookkeeping shall be further explored.

References

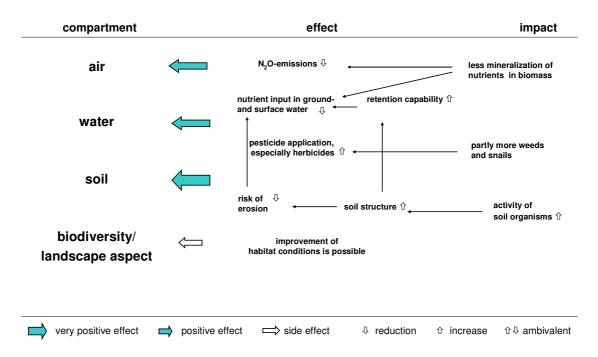
- Eisele, M. (2007): Target areas for water conservation (Deliverable 3.1, unpublished)
- Osterburg, B. and Runge, T. (2007): Procedures for cost predictions at the level of the individual farm, region, river basin area and Federal State (Deliverable 7.1, unpublished)
- Osterburg, B., Rühling, I., Runge, T., Schmidt, T.G., Seidel, K., Antony, F., Gödecke, B. and Witt-Altfelder, P. (2007): Kosteneffiziente Maßnahmenkombinationen nach Wasserrahmenrichtlinie zur Nitratreduktion in der Landwirtschaft. In: Osterburg, B. and Runge, T. [eds.]: Maßnahmen zur Reduzierung von Stickstoffeinträgen in Gewässer - eine wasserschutzorientierte Landwirtschaft zur Umsetzung der Wasserrahmenrichtlinie. Landbauforschung Völkerode, Sonderheft 307, pp. 3-156.
- Osterburg, B., Runge, T., Schmidt, T.G. (2007): Report on impact scenarios: Definition of scenarios for the economic analysis (Deliverable 7.2) - 05/2007 (unpublished)
- Reiter, K., Roggendorf, W., Runge, T., Schnaut, G., Horlitz, T. and Leiner, C. (2005): Aktualisierung der Halbzeitbewertung von PROLAND NIEDERSACHSEN Programm Entwicklung zur der Landwirtschaft und des ländlichen Raums, Kapitel 6. Agrarumweltmaßnahmen - Kapitel VI der VO (EG) Nr. 1257/1999. In: Bundesforschungsanstalt für Landwirtschaft (FAL), Institut für Ländliche Räume [eds.]: Aktualisierung der Halbzeitbewertung von PROLAND NIEDERSACHSEN Programm zur Entwicklung der Landwirtschaft und des ländlichen Raumes gem. Verordnung (EG) Nr. 1257/1999. pp. 1-155. Braunschweig, Hamburg, Hannover.
- Schmidt, T. G., Osterburg, B. and Laggner, A. (2007): Datenauswertung zur Quantifizierung diffuser Stickstoffemissionen aus der Landwirtschaft im Rahmen des Projekts "Integriertes Monitoring des chemischen Zustandes des Grundwassers" in Niedersachsen. Top-Down-Ansatz mit Daten der Agrarstrukturerhebungen 1999 und 2003 und Analyse des Landnutzungswandels. Arbeitsberichte des Bereichs Agrarökonomie 02/2007 der FAL. Braunschweig.

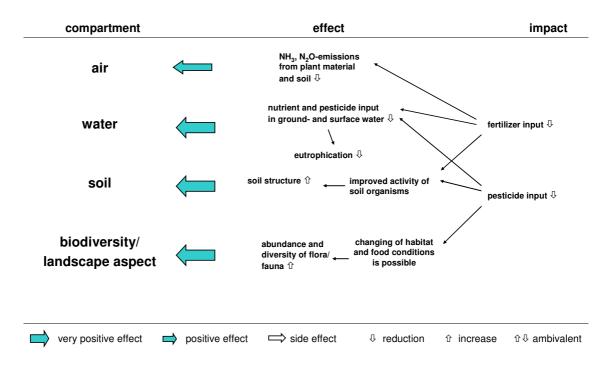
Annexes


Annex 1: Impact charts of the ecological impacts of WAgriCo-measures28
Annex 2: Single parcel combinations of the measures
Annex 3: Estimated N-surplus reduction and payment level for the WAgriCo action- oriented measures

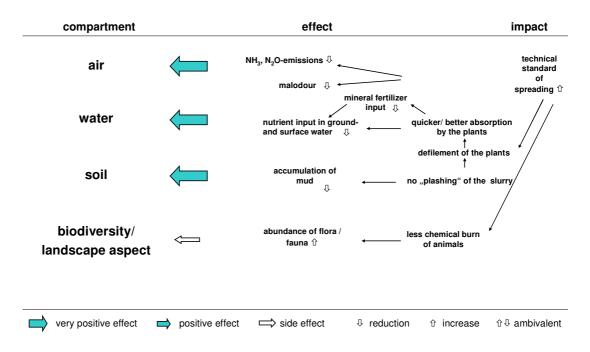
No.	Impact chart	WAgriCo-measure
1	Catch crops and undersown crops	H 1, H 2, H 4, H 11, H 12
2	Timing of tillage, conservation tillage in autumn	H 5, H 13
3	Timing of manure spreading, timing of mineral fertilisation	Н б
4	Improved techniques for manure spreading	Н 7, Н 9
5	N-reduced fertilisation and use of N-stabilised fertiliser	H 10
6	Pasture management	Н 3

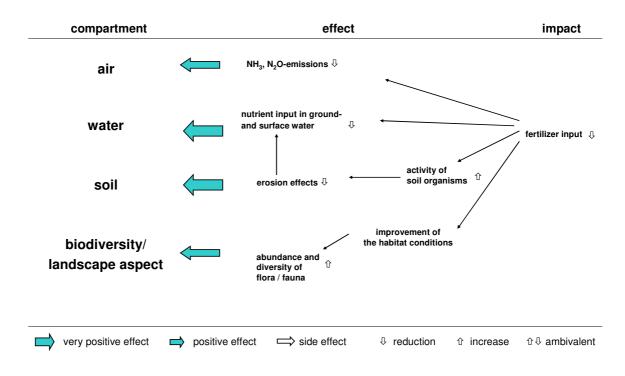
Annex 1: Impact charts of the ecological impacts of WAgriCo-measures


WAgriCo-measure H 8 is not assigned. It corresponds with impact chart No. 1 only in terms of an improved uptake of nutrients in biomass.


Design and contents of the charts were taken from Osterburg and Runge, 2007, and Reiter et al., 2005.

Catch crops and undersown crops


Timing of tillage, conservation tillage in autumn



Timing of manure spreading, timing of mineral fertilisation

Improved techniques for manure spreading

N-reduced fertilisation and use of N-stabilised fertiliser

Pasture management

compartment	effect	impact
air <	MH_3 , N_2O -emissions \clubsuit	— spreading and stocking losses ${\mathbb Q}$
water	organic material in soil û	quantity of slurry ${\mathbb Q}$ nount of manure deposited ${\mathbb T}$
	eutrophication û compaction û abundance of	damage by treading û furtherance and conservation of pasture typical plants
soil	flora / fauna û 4 suppression of treaplant varieties	-
	beauty, characteristic and variability of landscape \hat{T}	animals visible in landscape
biodiversity/ landscape aspect	manifold landscape û Conservation of the cultural landscape	manifold appearance of the grassland
animal welfare	vitality and health	mals can move freely and ropriate to the species
very positive effect 🖨 p	positive effect \Longrightarrow side effect \clubsuit reduction	û increase û ₽ ambivalent

Annex 2: Single parcel	combinations	of the	measures

	N-su		s redu kg N/ł		H1	H2	Н3	H4	Н5	H6	H7	H8	Н9	H10	H11	H12	H13
		min	avg	max													
H1	Catch cropping after harvest (winter-hardy, late ploughing)	0	20	40		-	-	-	-	(+)	-	+	+ summer cereals	+ H1 first, potatoes succeed	+ H1 first	-	-
H2	Catch cropping after harvest (standard)	0	20	40	-		-	-	-	(+)	-	+	+ summer cereals	+ H2 first, potatoes succeed	+ H2 first	-	-
Н3	Three-year fallow with active greening	40	60	80	-	-		-	-	-	-	-	-	-	-	-	-
H4	Volunteer rye or Triticale before summer crops	0	10	30	-	-	-		-	-	-	+	+ summer cereals	+ H4 first, potatoes succeed	+ H4 first	-	-
Н5	No soil tillage/ploughing in autumn after maize/sugar-beet	0	5	10	-	-	-	-		-	-	+	+ summer cereals	+ H5 first, potatoes succeed	+	-	-
H6	Restrictions for farm manure application in autumn	10	15	40	(+)	(+)	-	-	-		+	+	+	+	+	(+)	+
H7	Improved slurry application techniques	10	15	40	-	-	-	-	-	+		-	-	-	-	+ winter cereals	-
H8	Reduced row spacing for maize	0	10	20	+	+	-	+	+	+	-		-	-	- in practice	-	-

	N-su	rplus	redu	ction	H1	H2	H3	H4	H5	H6	H7	H8	Н9	H10	H11	H12	H13
		[]	kg N/ł	na*a]													
		min	avg	max													
H9	Use of ammonium based liquid fertilisers using injection technique in cereals	0	10	20	+ summer cereals	+ summer cereals	-	+ summer cereals	+ summer cereals	+	-	-		-	-	+	+
H 10	Application of stabilised mineral fertilizer in spring on winter cereals and potatoes	0	10	20	+ H1 first, potatoes succeed	+ H2 first, potatoes succeed	-	+ H4 first, potatoes succeed	+ H5 first, potatoes succeed.	+	-	-	-		-	+ winter cereals	+
H11	Undersown catch crops in maize	0	10	20	+ H1 first	+ H2 first	-	+ H4 first	+ after catch c.	+	-	- in practice	-	- in practice		-	-
H12	Turnip (brassica rapa sylvestris) as catch crop before winter cereals	0	10	20	-	-	-	-	-	(+)	+ winter cereals	-	+	+ winter cereals	-		-
H13	Reduced tillage of volun- teer rape seedlings before winter cereals (respect- tively summer crops)	0	15 (20)	30 (40)	-	-	-	-	-	+	-	-	+	+	-	-	

+ Combination possible, payments for both measures and a cumulative effect
 (+) combination possible and payments for both measures, but only positive environmental effect from catch crop growing
 - combination at parcel level not possible

Num	ber and name of the measures	payment [€/ha*a]	re	l-surpl eductio g N/ha	n*		cost-effectiveness [€/kg N]			
			min	avg	max	min	avg	max		
H1	Catch cropping after harvest (winter- hardy, late ploughing)	120	0	20	40	3	6	∞		
H2	Catch cropping after harvest (standard)	80	0	20	40	2	4	~		
Н3	Three-year fallow with active greening (only offered in 2006)	120	40	60	80	0.7	2	3		
H4	Volunteer rye or Triticale before summer crops (in 2006 also volunteer rape seedling)	30	0	15	30	1	1.5	∞		
Н5	No soil tillage/ploughing in autumn after maize/sugar-beet	25	0	5	10	2.5	5	∞		
H6	Restrictions for farm manure application in autumn (application only to catch crop, rape, grassland with time restrictions)	15*	10	20	30	0.5	0.75	1.5		
H7	Improved slurry application techniques (to winter cereals, winter rape, grassland)	25(35)* *	10	20	40	0.6 (0.9)	1.7 (2.3)	2.5 (3.5)		
H8	Reduced row spacing for maize	40	0	10	20	2	4	8		
H9	Use of ammonium based liquid fertilisers using injection technique in cereals	35	0	10	20	1.8	3.5	∞		
H10	Application of stabilised mineral fertilizer in spring on winter cereals and potatoes	25	0	10	20	1.2	2.5	∞		
H11	Undersown catch crops in maize	125	0		20	6.25		~		
H12	Turnip (brassica rapa sylvestris) as catch crop before winter cereals (only offered in 2007)	60	0		20	2		∞		
Н13	Reduced tillage of volunteer rape seedlings before winter cereals respectively summer crops (only offered in 2007)	40	0	15 (20)	30 (40)** *	1.3 (1)	2.7 (2)	ø		

Annex 3: Estimated N-surplus reduction and payment level for the WAgriCo actionoriented measures

* In 2006/2007 payment for arable land with cereal production: 30 €/ha; in 2007/2008 only fellow excluded from payment. ** $25 \notin$ / ha for drag hoses, $35 \notin$ / ha for trailing shoes or injection

*** 30 for winter crops and 40 for summer crops