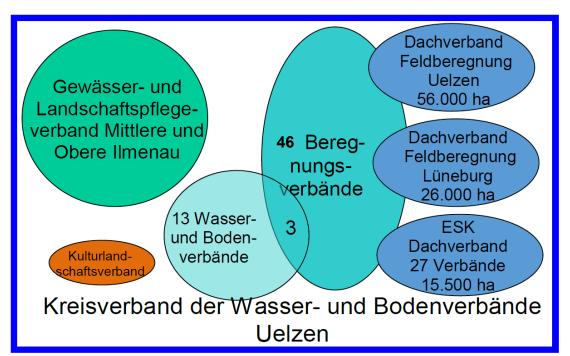
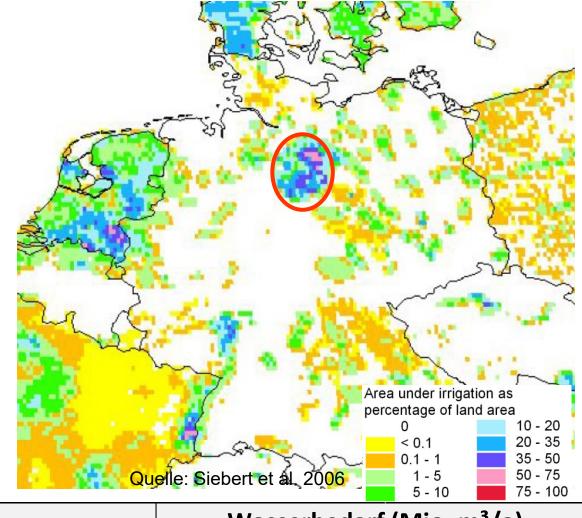
Wassermengenmanagement für die Feldberegnung in Ostniedersachsen - Konzepte und Projekte


- Strukturen und Entwicklung der Feldberegnung in Nordostniedersachsen
- Klimawandelaspekte, Gutachten, Wasserwirtschaft und Wassermanagement
 - Projekte und Konzepte im Raum Lüneburg Uelzen (IWAMAKO ZuSa)


Bedeutung der Bewässerung

Bewässerte Fläche:

- Deutschland ~ 790.000 ha (~ 7 % der Ackerfläche)
- Niedersachsen (13,5% von DE)
 - ~ 360.000 ha (47% von DE)
- Nordostniedersachsen ~ 250.000 ha (30% von DE)
- Kreisverband WuB UE ~ 100.000 ha (12% von DE)
- Uelzen ~ 65.000 ha (8,5% von DE) (Landkreisfläche, 0,4% von DE)

Insgesamt rd. 310.000 ha Verbandsfläche in 66 Verbänden

Ebene	Wasserbedarf (Mio. m³/a)		
	Beregnung 2020	Beregnung 2050	
Niedersachsen	250	>> 350	
Nordost-Nds.	204	255	
Uelzen	50	62	

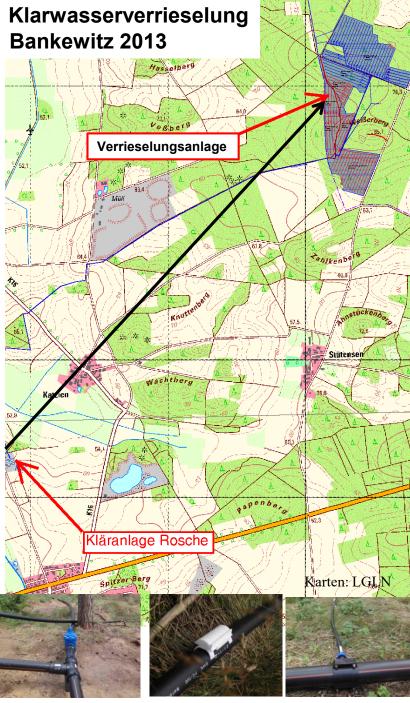
Umgesetzte Maßnahmen in Nordostniedersachsen

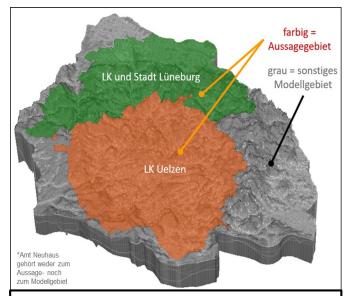
Projekte zum Wassermanagement: Wasserspeicher/GW-Anreicherung/Ersatz von GW-Entnahmen/Wasserrückhalt

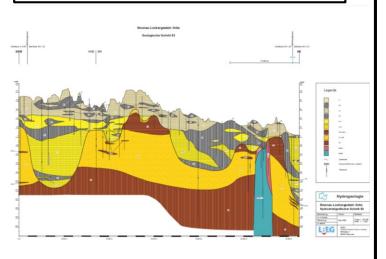
- I. Speicher 770.000 m³ (Stöcken, 2003)
- 2. Speicher 440.000 m³ (Borg, 2014)
- 3. Speicher 250.000 m³ (Störtenbüttel, 1987)
- 4. GW-Anreicherung rd. 250.000 m³/a (Rosche, 2013)
- 5. Erweiterung ESK Beregnung von 14.500 ha auf 16.000 ha >> + rd. 1,5 Mio. m³ (~2016)
- 6. Rückhalt in Entwässerungsgräben (~1990, 2023/24)

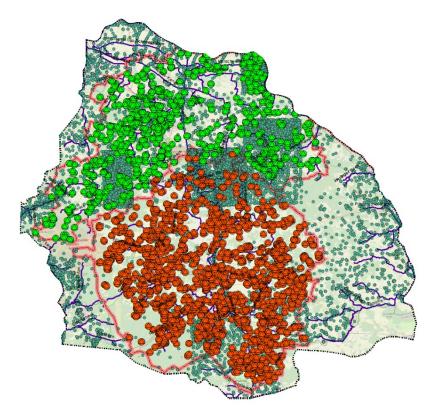
Aufbau eines Monitoringsystems in Lüneburg/Uelzen (seit 2019)

Projekte zum Wassermanagement

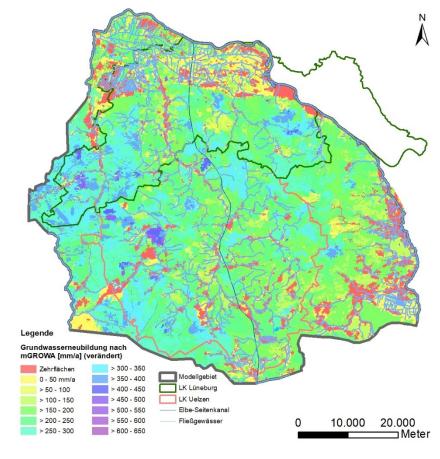

Wasserspeicher Rosche-Borg 2014


Wasserrückhalt Lucie/Wipperau




Bilder: Dachverband Feldberegnung Uelzen

Hydrogeologisches Strukturmodel

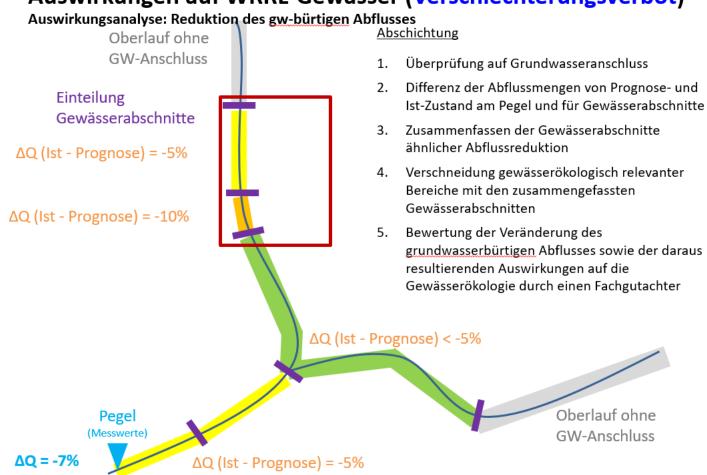

- Modellgebiet 3.850 km²
- Aussagegebiet 2.788 km²

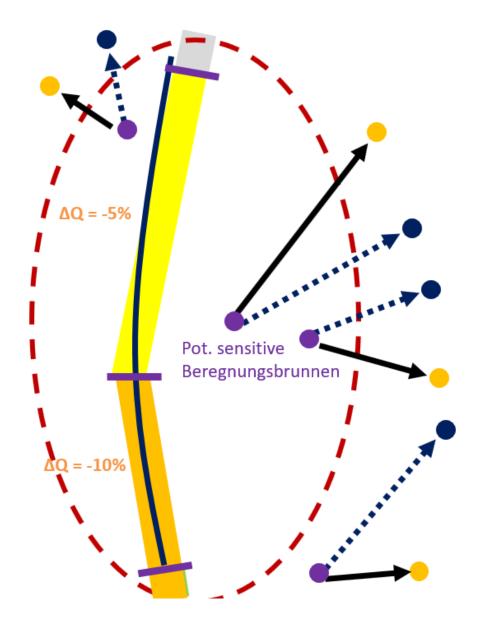
Brunnen/Bohrungen

- 865 Beregnungsbrunnen in Lüneburg
- 1.194 Beregnungsbrunnen in Uelzen
- 118 Förderbrunnen Trinkwasser und Gewerbe
- 385 Grundwassermessstellen
- über 22.000 ausgewertete Bohrprofile

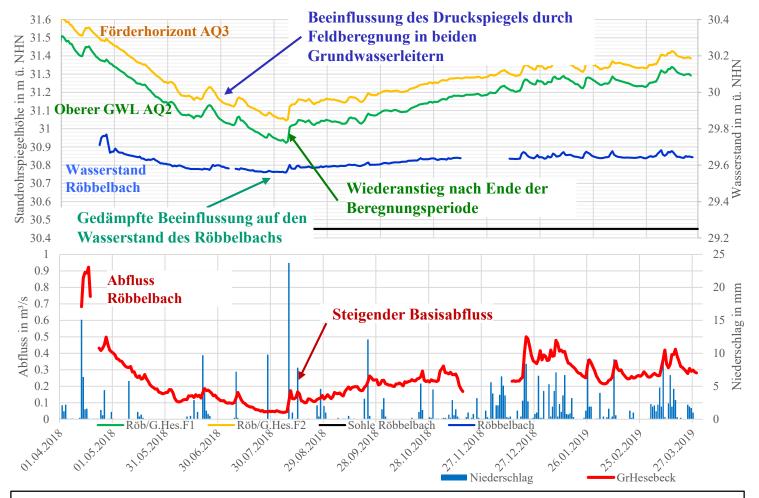
Grundwasserneubildung

Basis: Wasserhaushaltsmodell mGROWA (monatlicher Großräumiger Wasserhaushalt, LBEG)

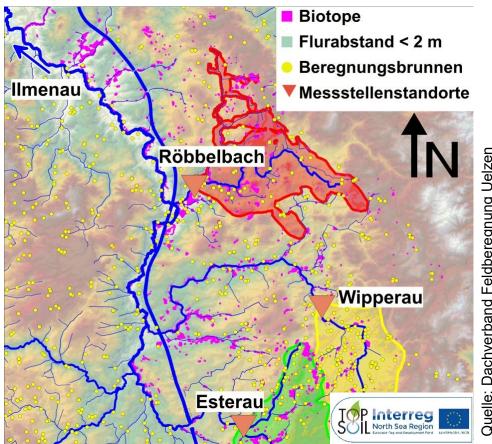

Gebietsmittel: 679,3 Mio. m³/a (176 mm/a)


Quelle: Dachverband Feldberegnung Uelzen

Hydrogeologisches Strukturmodel


Ausgleich von Beeinträchtigungen durch GW-Absenkungen durch Verlagerung/Reduzierung von Entnahmen

Auswirkungen auf WRRL-Gewässer (Verschlechterungsverbot)



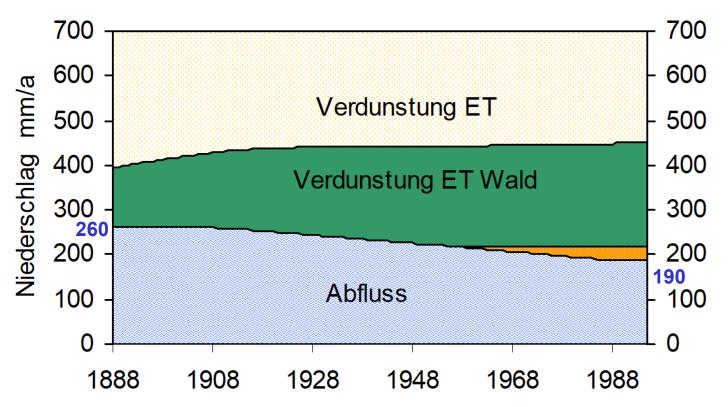
Aufbau + Erprobung eines Monitoringsystems

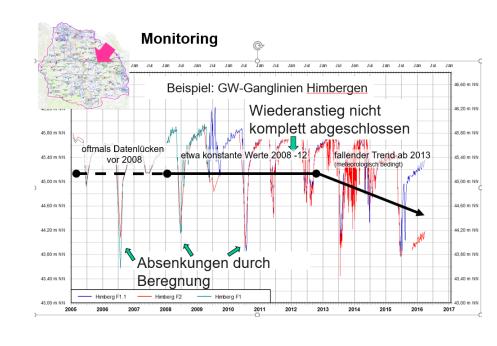
Ziele

- Reduzierung der Messstellen
- Übertragung auf Gesamtgebiet
- Identifizierung geeigneter Verfahren zur Abflussmessung
- Entwicklung geeigneter Prognoseverfahren

Monitoring in sensiblen Gebieten:

- Biotope (gLÖS)
- Gewässeroberläufe (Minimalabflüsse)
- Hohe Betroffenheit durch Wasser-entnahmen für Feldberegnung


Messstellenbau:


- Abflussmessstelle
- Grundwassermessstellen
 - flach: Gewässeranschluss
 - tief: Entnahmehorizont

Anthropogener und klimatischer Einfluss: Grundneubildung, Abfluss, Wasserhaushalt

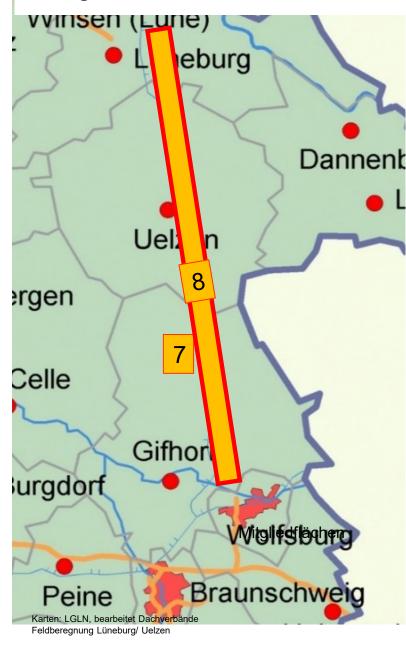
Änderung der Wasserhaushaltskomponenten

Einfluss von Aufwaldung und Entnahmen im Einzugsgebiet der Ilmenau (AE = 1430 km²)

Weniger Schafe = weniger Heidefläche =

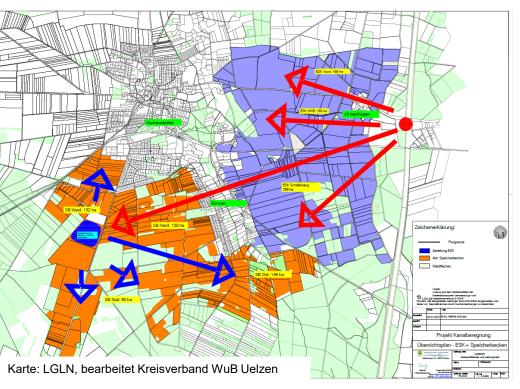
mehr Wald = weniger Grundwasserneubildung ET Wald

Entnahme


Abfluss

minus 70 mm >> 100 Mio. m³/a Abflussrückgang

- 20 mm durch GW-Entnahmen
- 50 mm durch Aufwaldung

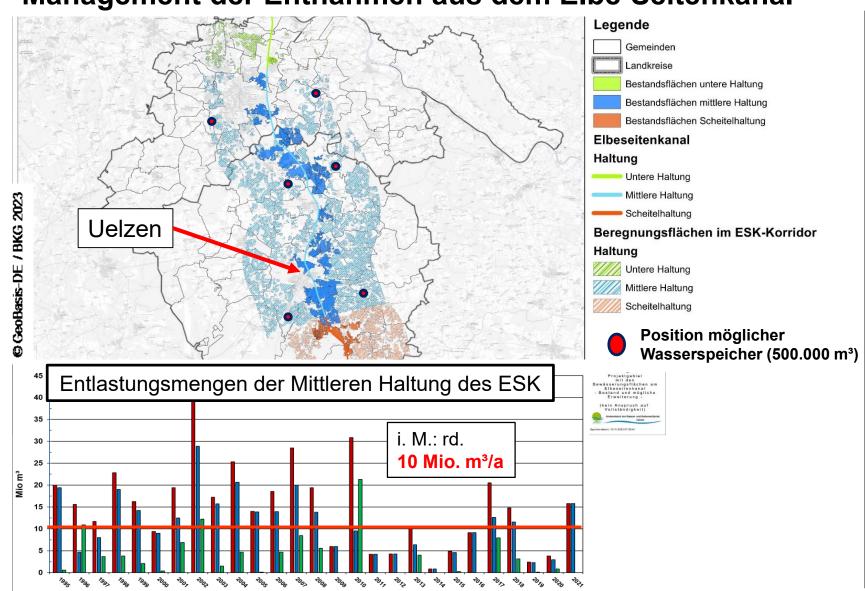

Quelle: Mittlere jährliche Wasserbilanz Ilmenau am Pegel Bienenbüttel, bezogen auf die Gesamtfläche des Einzugsgebietes (AE = 1430 km2), Einfluss der Grundwasserentnahmen (Feldberegnung, Wittenberg, 1998)

Projekte im Vorentwurfsstadium in Nordostniedersachsen

Planungen zum Wassermanagement: Wasserspeicher/GW-Anreicherung/Ersatz von GW-Entnahmen

- 7. Speicher 1 Mio. m³ (Hankenbüttel)
- 8. Nutzung/Speicherung/Versickerung von Überschusswasser des ESK

Wasserspeicherkonzept Hankensbüttel


- Speichervolumen: ~ 1 Mio. m³
- Speicherfüllung im Winter
- Beregnung im Sommer aus
 - Speicherbecken
 - Elbe-Seitenkanal
 - Grundwasser

- Energiekonzept (PV, Speicher, Wasserstoff)
- Vorhabenträger: Dachverband Beregnung Hankensbüttel
- Idee: IG Kanalberegnung Hankensbüttel

Projekte im Vorentwurfsstadium in Nordostniedersachsen

Management der Entnahmen aus dem Elbe-Seitenkanal

nnerhalb der Beregnungsperiode von April-September

Untersuchung der Nutzung der Entlastungsmengen an sechs ausgewählten Standorten

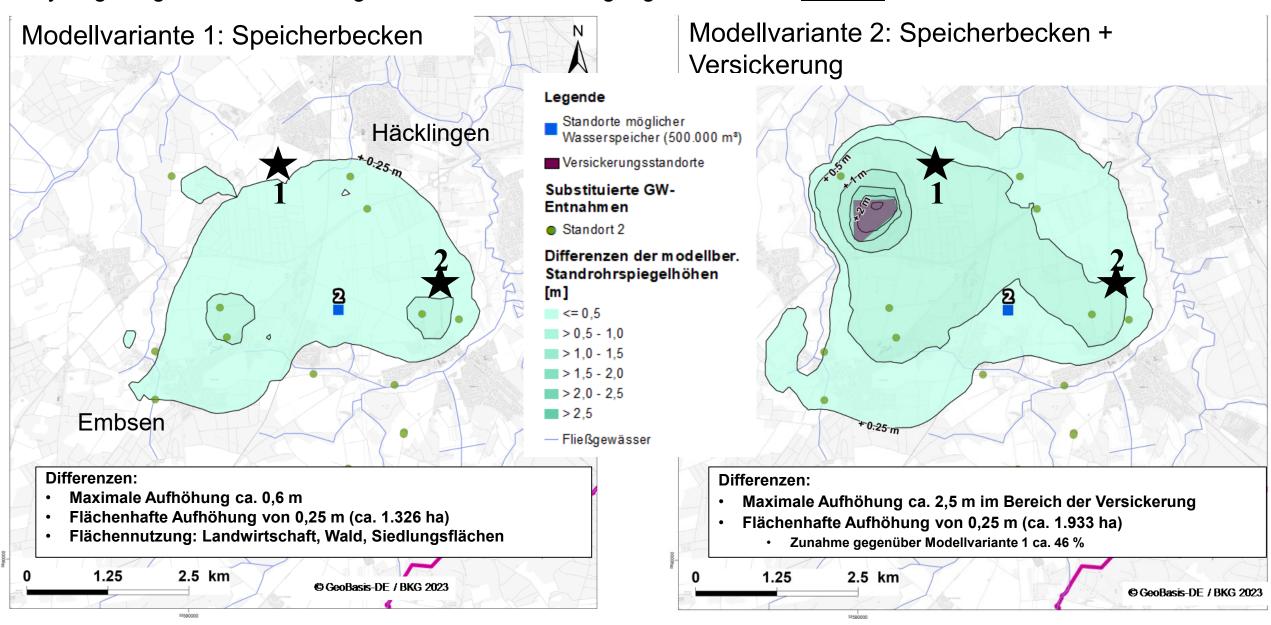
Berechnung von zwei Modellvarianten:

- Variante 1: Speicherbecken
- Variante 2: Speicherbecken und Versickerungsflächen

Ziele:

- Substitution von Grundwasserentnahmen
- Grundwasseranreicherung in den Grundwasserkörpern

Neue Infrastruktur erforderlich


- Entnahmebauwerke
- Transportleitungen
- Wasserspeicher
- Versickerungsflächen

Qualität des zu versickernden Wassers ist laufend zu Überwachen

Überschusswasser aus dem Elbe-Seitenkanal (ESK)

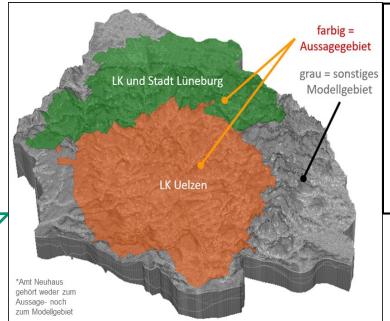
Hydrogeologische Modellierung: Differenzen zum Ausgangs-Zustand im Februar

Integriertes Wassermengenmanagementprojekt

für Lüneburg und Uelzen (IWAMAKO ZuSa)

Bestandsanalyse

• Bedarfsanalyse 2035/2050


Lösung für Defizite

Umsetzungsstrategien

Untersuchungen, Konzepte und Ergebnisse zum **Wassermanagement:**

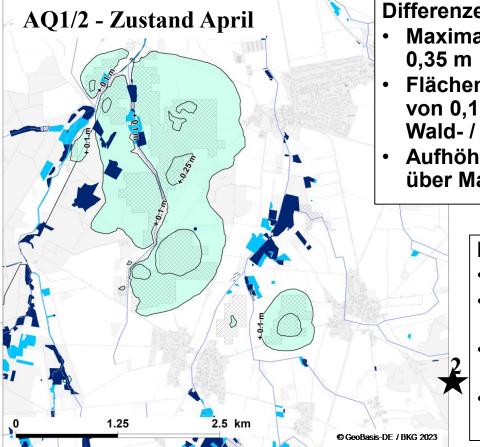
- Steuerung/Einstau von Drainagen
- 10. Anhebung Gewässersohlen
- 11. Identifizierung von Flächen zur GW-Anreicherung
- 12. WaterReuse: Klarwasser aus Kläranlagen

Hydrogeologisches Strukturmodell

Szenarienberechnung **Bestand >> Planung**

- **Modellgebiet** 3.850 km²
- Aussagegebiet 2.788 km²

Bestandsanalyse



U

otential

analyse

Wirkung der Steuerung von Drainagen

Differenzen - Winter:

- Maximale Aufhöhung ca. 0,35 m
- Flächenhafte Aufhöhung von 0,1 m (ca. 467 ha, Wald- / Ackerflächen)
- Aufhöhung erstreckt sich über Maßnahmengebiet

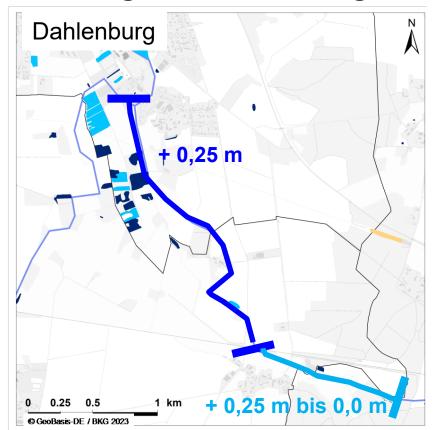
Differenzen - Sommer:

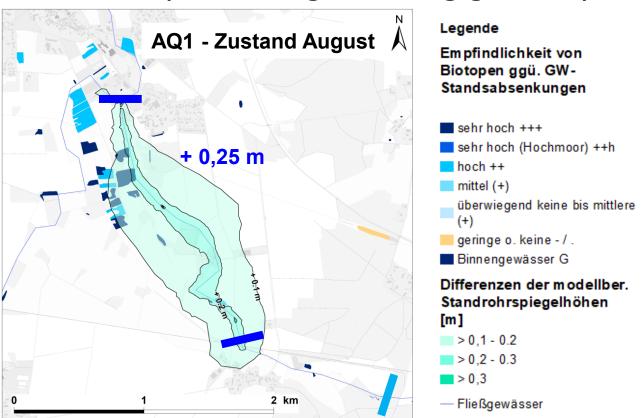
- Maximale Aufhöhung ca. 0,25 m
- Flächenhafte Aufhöhung von 0,1 m (ca. 262 ha)
- Keine aktive Drainagesteuerung → Aufhöhung verringert sich
- Verringerung gegenüber Zustand April ca. 44 %)

AQ1/2 - Zustand August Wrestedt @ GeoBasis-DE / BKG 2023

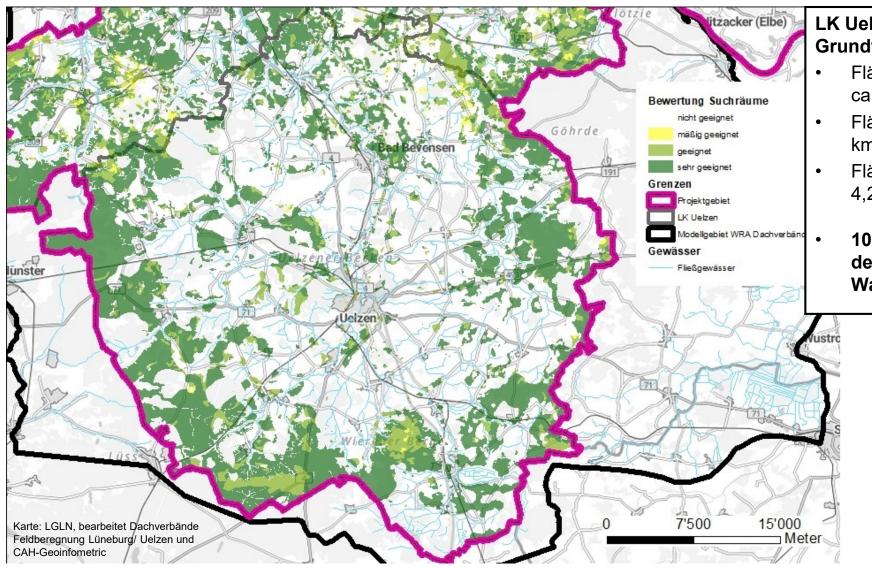
Ganzjähriger Anstieg der Standrohrspiegelhöhen im oberflächennahen Grundwasserleiter

- Größte Wirkung im oberflächennahen GWL im Bereich des Maßnahmengebiets
- Abnahme der Wirkung in den tieferen GWL (kleinere Differenzen, kleinräumigere Verbreitung)


Ganzjährige Zunahme des Basisabflusses an benachbarten Fließgewässern

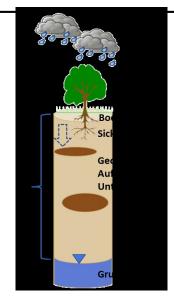

- Wirkung nimmt in den Monaten der aktiven Maßnahme zu und klingt in den dazwischenliegenden Monaten wieder ab
- Beispielhafte Betrachtung zeigt, dass ein Großteil des angereicherten Wassers über den Basisabfluss wieder abgeführt wird (ca. 84 %)

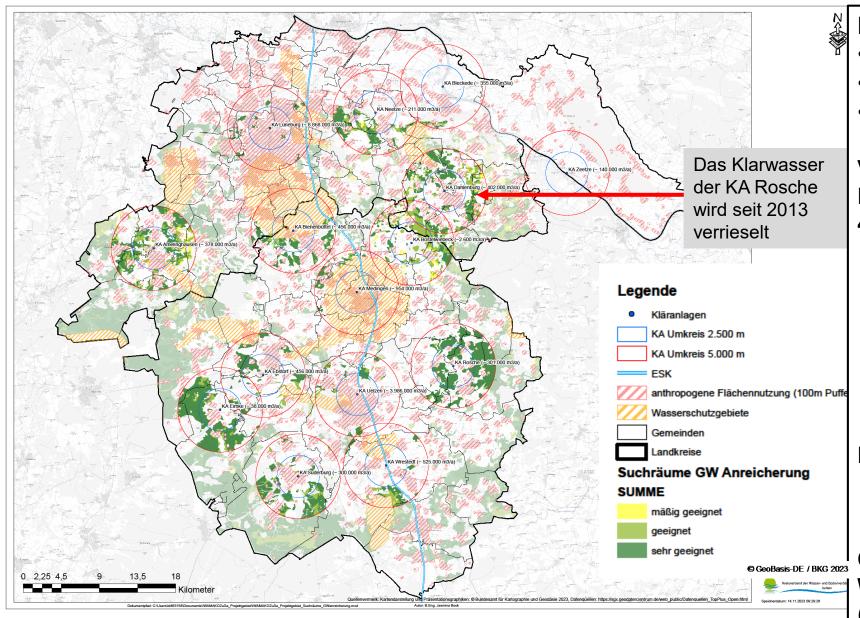
Wirkung einer Anhebung der Gewässersohle (Bereiche gw-abhängiger LÖS)


Anhebung der Gewässersohle (0,25 m auf ca. 2,5 km, 0,25 m >> 0 m auf ca. 1,0 km)

- Anstieg der Standrohrspiegelhöhen im oberflächennahen GW-leiter
- Anhebung orientiert sich am Verlauf des Fließgewässers
- Wirkung der Maßnahme ist auch für angrenzende gwLös vorhanden
- Verminderung des Basisabflusses an den untersuchten Pegeln

Grundwassermodell – GW-Anreicherungen


Identifizierung geeigneter Suchräume


LK Uelzen (ca. 1.454 km²): Grundwasseranreicherung

- Fläche mit Gesamtbewertung: "**sehr geeignet**" ca. 392 km²
- Fläche mit Gesamtbewertung: "**geeignet**" ca. 84,2 km²
- Fläche mit Gesamtbewertung: "evtl. geeignet" ca. 4,2 km²
- 100 mm zusätzliche GW-Neubildung auf 1/5 der Fläche (100 km²) ergeben rd. 10 Mio. m³/a Wasser

Substitution durch Wasser aus Kläranlagen

Ergebnisse:

- 15 Kläranlagen im Projektgebiet
- ca. **17 Mio. m³** Wasser pro Jahr
- theoretisch hohe Verfügbarkeit

Vorrausetzung für eine direkte Nutzung ist mindestens die

- 4. Reinigungsstufe
 - KA > 100.000 EW, verpflichtend ab 2035 >> KA Lüneburg
 - KA > 10.000 EW, verpflichtend ab 2040
 - KA Uelzen
 - KA Medingen
 - KA Dahlenburg

Neue Infrastruktur erforderlich

- Transportleitungen
- Wasserspeicher
- Versickerungsflächen

Qualität des zu versickernden Wassers ist laufend zu Überwachen

(u. a. phytosanitäre Anforderungen)

Maßnahmen in der Landwirtschaft: Einsparmöglichkeiten, Alternativer Pflanzenbau und neue Anbausysteme - "Weiche Maßnahmen" zu Wassereinsparmöglichkeiten im Nutzpflanzenanbau

- Einsparmöglichkeiten
 - Bodenbearbeitung
 - Sortenwahl
 - Fruchtfolge
 - Bodenfruchtbarkeit/Humus
 - Agroforst
 - Beregnungstechnik (Verdriftung/Verdunstung)
- Es gibt bisher nur wenig konkrete Ergebnisse/Aussagen
- Es besteht noch erheblicher Forschungsbedarf zur Wassereffizienz
 - Beregnungstechnik
 - Sortenwahl

Gesamtbewertung der untersuchten Optionen Zusätzliche Wassermengen und Maßnahmenübersicht

Zusätzlich verfügbare Menge rd. 12,5 Mio. m³/a (modelltechnisch nachgewiesen) Weitere potentiell verfügbare Wassermenge rd. 15 Mio. m³/a

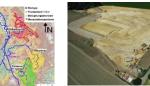
	Maßnahme	Vorteile	Herausforderungen	Effekt für Grundwasserdargebot	Gesamtbewertung
1.	Steuerung von Drainagen	Landwirt kann selbst steuern	ggf. Verringerung landwirtschaftlich nutzbarer Fläche, Umsetzung nur bei Drittmittelfinanzierung und Detailplanung mit betroffenen Landwirten	signifikant	Sollte umgesetzt werden!
2.	Anhebung der Gewässersohle für gwLös	Hohe ökologische Synergien	Ggf. Querbauwerk, rechtl. Rahmen, Baukosten, Ausgleichsmaßnahmen, Hochwasserrisiko, Wirkung kaum	vorhanden, gering	Aus ökologischen Gründen umsetzen und finanzieren
3.	Einrichtung von Retentionsflächen		quantifizierbar	kaum vorhanden	
4.	Maßnahmen in der Landwirtschaft	Landwirt kann Maßnahmen flexibel wählen und umsetzen	Weiterer Beratungs- und Forschungsbedarf hinsichtlich wassersparender Maßnahmen	vorhanden, gering	Bewässerung bleibt das effektivste Mittel zur Klimaanpassung im Nutzpflanzenbau
6.1	Erweiterung der ESK-Beregnung	Bisher schon erprobtes Verfahren. Durch Wehr in Geesthacht unabhägige Wasserquelle. Kein Speicher erforderlich.	Pumpwerk an der Schleuse Lüneburg muss ausgebaut werden, zusätzliche Entnahmebauwerke, Infrastruktur, Kosten	sehr hoch	sehr geeignet
6.2	Substitution Überschusswasser ESK	Bisher schon erprobtes Verfahren.	Kosten technische Infrastruktur (Wasserspeicher, Versickerungsanlagen)	sehr hoch	sehr geeignet
7.	untere Haltung ESK / Elbe	Durch Wehr in Geesthacht unabhägige Wasserquelle. Kein Speicher erforderlich	Kosten technische Infrastruktur (Entnahmebauwerke, Zuleitungen, Druckerhöhungen, Verteilungsnetze)	hoch	sehr geeignet
8.1	Versickerung aus Kläranlagen	Große verfügbare Wasserressource	Qualität des Wassers (4. Reinigungsst. erforderlich) Flächenbedarf, Kosten Infrastruktur	sehr hoch	sehr geeignet
8.2	Verregnung aus Kläranlagen , nach Speicherung	Große verfügbare Wasserressource	Qualität des Wassers (4. Reinigungsst. erforderlich), Kosten Infrastruktur, phytosanitäre Risiken	sehr hoch	sehr geeignet

Wassermengenmanagement für die Feldberegnung in Ostniedersachsen Konzepte und Projekte Wasser und Daseinsvorsorge - Resümee

Wassermanagement für die Wasserversorgung

- Wasser ist das wichtigste und vulnerabelste Element im Klimawandel
- Wasser für Menschen, Tiere und Nahrungsmittelerzeugung
- Vernetzung von Wasserbedarf und Wasservorkommen
- Bedarfe nach Menge und Qualität berücksichtigen und abdecken
- Landschaftswasserhaushalt stabilisieren
- Zielkonflikte auflösen (z.B. Wasserrückhalt Durchgängigkeit)
- · Akzeptanz für Maßnahmen und Finanzierung
- Muss politisch gewollt und gesellschaftlich akzeptiert sein
- Finanzierung/Förderung über Landes-, Bundes- und EU-Mittel
- Kosten vergleichbar zur Entwässerung in den 1950 1970ger Jahren
- Es gibt viele Maßnahmen mit denen schon begonnen werden könnte

Herausforderungen der Wasserwirtschaft



Herausforderungen der Gesellschaft und Politik

