

Wasserrechtlicher Planfeststellungsantrag für die Errichtung eines FSRU-Schiffsanlegers mit Liegewanne und Zufahrtbereich

LNG Voslapper Groden Nord 2

Teil B - Antragsunterlagen 21 Hydromorphologische Auswirkungen, Kolkschutz FSRU Wilhelmshaven GmbH

15. März 2024

Kontakt

KERSTIN ZÜLCH Senior Consultant Genehmigungsverfahren

M +49 173 4102391
E kerstin.zuelch@arcadis.com

Arcadis Germany GmbH EUREF-Campus 10 10829 Berlin Deutschland

WEITERE BETEILIGTE

Georg Fank (extern) Lena de Koning

Inhalt

21	Hydromorphologische Auswirkungen, Kolkschutz			
	21.1	Einleitung und Übersicht der Dokumente	5	
	21.2	Simulationsmodelle	5	
	21.3	Morphologische Studie	6	
	21.3.1	Allgemeines	6	
	21.3.2	Bewertung bereits vorhandenen Daten	6	
	21.3.3	Berechnung hydrodynamischer Auswirkungen	6	
	21.3.4	Zu erwartende Auswirkungen	6	
	21.3.5	Monitoring	8	
	21.4	Ausbreitung von Sedimentfahnen bei Baggerarbeiten und Verklappung	8	
	21.4.1	Hintergrund der Studie	8	
	21.4.2	Datenmodell und Rahmenbedingungen	9	
	21.4.2.1	Szenarien	9	
	21.4.2.2	Ergebnisse	10	
	21.5	Kolkschutz	12	
	21.5.1	Kolkschutz der Dalben	12	
	21.5.2	Kolkschutz der Pontonpfähle	14	
Ab	bildun	gen		
		Sedimentations- und Erosionsmuster, berechnet nach einem Jahr, simuliert n., Dalben und FSRU, Vergrößerung rund um das Wendebecken	mit 7	7
		Relative Sedimentations-Erosionsmuster durch Wendebecken, Dalben und Fautonomen morphologischen Entwicklung	FSRU (im 8	3
		Berechnungsgitter des Jade-Weser-Modells mit zusätzlichen Gitteroptimieru ppstelle K01.	ngen rund ç)
		Überblick über die verschiedenen Arten von Baggerfreisetzungen und die ve das Modell einbezogen werden	rtikalen 10)
		Maximale angetroffene Sedimentkonzentration [mg/L] von Feinstoffen (< 210 ssersäule während des Simulationszeitraums. Baggerszenario A, Springbedi		
Abb	ildung 6: l	Kolkschutz berücksichtigte Lastfälle für den Schlepper bei der Abfahrt von LI	NG-Schiffen 12	2

Rev. 05 15.03.2024 Seite **3** von **17**

14
15
15
5
13
1

Rev. 05 15.03.2024 Seite **4** von **17**

21 Hydromorphologische Auswirkungen, Kolkschutz

21.1 Einleitung und Übersicht der Dokumente

Aufgrund des Baus des Anlegers, des verankerten FSRU-Schiffs und der Ausbaggerung des Zufahrtsund Wendebeckens ist eine Reihe von morphologischen Reaktionen zu erwarten. Auf Basis der zu
erwartenden Auswirkungen werden entsprechende Maßnahmen ergriffen. Hierzu gehören
insbesondere konstruktive Kolkschutzmaßnahmen im Bereich der Dalben und der Pontonpfähle,
Monitoringmaßnahmen und darauf abgestimmte Unterhaltungsmaßnahmen. Die TdV hat IMDC mit
der Erstellung entsprechender Fachgutachten zu den hydromorphologischen Auswirkungen und zum
Kolkschutz beauftragt.

Tabelle 1 Übersicht der Dokumente

Kap.	Pos	Bezeichnung		
21	21 00 21.00_Hydromorphologische Auswirkungen_Kolkschutz		15	
	01	21.01_Morphologische Studie Abschlussbericht_2015.08	55	
	02	21.02_Bericht über die Ausbreitung von Sedimentfahnen_2025.05	55	
	03	21.03_Kolkschutzbewertung Meeresbauwerke_2038.05	105	
	04	21.04_CFD-Modell für die Verstärkung der Sohlschubspannung_2047.01	32	

21.2 Simulationsmodelle

Zur Beurteilung der morphologischen Auswirkungen und der Kolkbildung wurden zwei unterschiedliche Simulationsmodelle verwendet (CFD und TELEMAC). Dies deshalb, weil bei der Kolkbildung die Strömungsverhältnisse im Nahbereich um die baulichen Strukturen relevant sind; für die Sedimentation im Zufahrtsbereich und dem weiteren Umfeld dagegen die großflächigen Umweltbedingungen. CFD modelliert den Nahbereich, TELEMATIC die Auswirkungen im Umfeld. Beide Modelle sind international anerkannt und für den jeweiligen Zweck.

Die Berechnungen und Details zum CFD-Modell sind im Bericht "21.04_CFD-Modell für die Verstärkung der Sohlschubspannung_2047.01" in Kapitel 21 beschrieben. Die Ergebnisse der CFD-Modellierung gehen in die Bewertung zum Kolkschutz der Dalben ein. Details zum TELEMAC Modell werden direkt in "21.01 Morphologische Studie Abschlussbericht 2015.08" beschrieben.

21.3 Morphologische Studie

21.3.1 Allgemeines

Im Rahmen der morphologischen Studie wurde die Morphologie des Projektgebiets und des größeren Jadebusens und die morphologischen Auswirkungen der Gewässerausbaumaßnahmen bewertet.

Zur Morphologie am Projektstandort und den möglichen Auswirkungen durch das Vorhaben hat die TdV umfangreiche Untersuchungen und Studien durch IMDC erstellen lassen. Die Ergebnisse finden sich in "21.01_Morphologische Studie Abschlussbericht_2015.08".

21.3.2 Bewertung bereits vorhandenen Daten

Die Morphologie des Projektstandorts und des größeren Gebiets des Jadebusens wurde anhand einer Desktop-Studie (Literaturrecherche) unter Verwendung verschiedener Datenquellen bewertet.

21.3.3 Berechnung hydrodynamischer Auswirkungen

Mit einem qualitativ validierten numerischen Modell wurden indikative morphologische Berechnungen durchgeführt, um die Reaktion des Meeresbodens auf die berechneten hydrodynamischen Auswirkungen der Projektstrukturen zu bewerten (insbesondere die vorgeschlagene Anordnung des Wendebeckens, der Dalben, der Pontonpfähle und der FSRU). Die morphologische Entwicklung nach einem Jahr der Simulation wurde mit der Referenzsimulation ohne die Projektstrukturen verglichen.

21.3.4 Zu erwartende Auswirkungen

Aufgrund des Baus des Anlegers, des verankerten FSRU-Schiffs und der Ausbaggerung des Zufahrtsund Wendebeckens ist eine Reihe von morphologischen Reaktionen zu erwarten. Auf Basis der zu erwartenden Auswirkungen werden entsprechende Maßnahmen ergriffen. Hierzu gehören insbesondere konstruktive Kolkschutzmaßnahmen im Bereich der Dalben und der Pontonpfähle, Monitoringmaßnahmen und darauf abgestimmte Unterhaltungsmaßnahmen.

- Die Auswirkungen der Dalben, der FSRU und der Zufahrt nach einem Jahr sind sehr lokal. Die Anleger von Uniper und HES und die nahe gelegen Muschelfischerbetriebe sind nicht betroffen.
- Die Pfähle des Anlegers beeinflussen die Strömung um diese Bauwerke herum. Die erhöhte Reibung durch einen Steg kann zu einer Umleitung der Strömung nach Osten und Westen führen. Dies wird zu Veränderungen in der Strömungsverteilung durch und entlang der Bauwerke führen, Kolke um die Dalben herum verursachen und Sedimentation unterhalb des Stegs anziehen.
- Im Bereich des Hecks und des Bugs des FSRU ist ein erheblicher Kolk sichtbar, der zu einer lokalen Vertiefung führt.
- Weitere morphologische Anpassungen sind aufgrund der neuen Strömungsverhältnisse zu erwarten. Die Strömung wird durch den Bau der Zufahrt in Richtung des Anlegers gelenkt. Dies wird durch die Umleitung der Strömung noch verstärkt und kann zu einer zusätzlichen Vertiefung entlang des Anlegers führen. Gleichzeitig ist mit einer lokalen Entspannung der Strömung durch die Vertiefung des Zufahrbereiches zu rechnen. Nach den morphologischen Anpassungen kann dies jedoch durch die Verengung der Strömung, die durch den Anleger und das FSRU verursacht wird, ausgeglichen werden.
- Wanderung von Sohlformen in das Wendebecken und den Zufahrtsbereich sind möglich. Aus den verfügbaren Tiefenlotungen ist das Vorhandensein von großen Sohlformen südöstlich des Projektgebiets ersichtlich. Solche Sohlstrukturen deuten darauf hin, dass eine überflüssige Menge an Sediment (Sand) entlang der Sohle migriert. Änderungen der Strömungsmuster und -geschwindigkeiten können die Wanderung dieser Strukturen beeinflussen und Sediment in das Baggergebiet bringen.

Rev. 05 15.03.2024 Seite **6** von **17**

• Die Ponton-Anlage wird eine örtlich begrenzte Wirkung auf das Strömungsfeld ausüben, wodurch es unterhalb und in unmittelbarer Nähe des Pontons zu lokalen Erhöhungen der Fließgeschwindigkeit kommen wird. Diese Geschwindigkeitserhöhungen werden den bereits um die Dalben ausgeführten Kolkschutz voraussichtlich nicht beeinträchtigen. Die zu erwartende Erosion aufgrund des Vorhandenseins des Pontons wird sowohl hinsichtlich ihrer maximalen Tiefe als auch hinsichtlich ihrer horizontalen Ausdehnung sehr begrenzt sein und nur einen kleinen Bereich betreffen, in dem der Meeresboden unter dem Ponton nicht durch den Kolkschutz um die Pfähle geschützt ist.

Der Kolkschutz wurde unter Berücksichtigung dieser möglichen morphologischen Veränderungen geplant. Siehe 21.5 Kolkschutz.

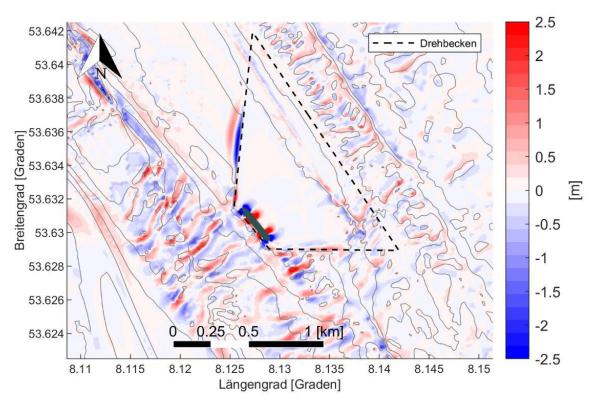


Abbildung 1: Sedimentations- und Erosionsmuster, berechnet nach einem Jahr, simuliert mit Wendebecken, Dalben und FSRU, Vergrößerung rund um das Wendebecken

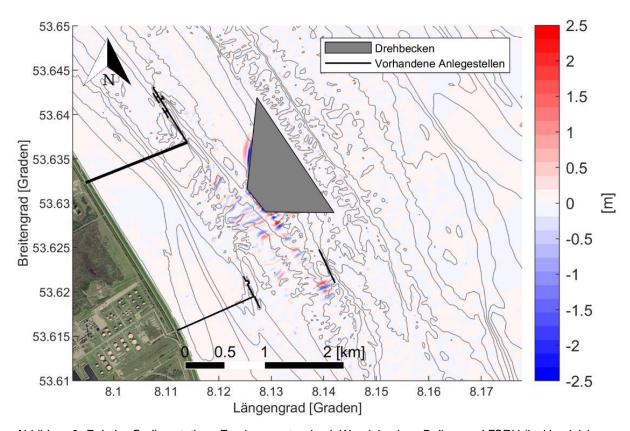


Abbildung 2: Relative Sedimentations-Erosionsmuster durch Wendebecken, Dalben und FSRU (im Vergleich zur autonomen morphologischen Entwicklung

21.3.5 Monitoring

Zur Überwachung der morphologischen Auswirkungen wird ein regelmäßiges Monitoring durchgeführt. Die TdV wird die Empfehlungen aus der Studie umsetzen. Details siehe Kapitel "18 Monitoring" der Antragsunterlagen.

21.4 Ausbreitung von Sedimentfahnen bei Baggerarbeiten und Verklappung

21.4.1 Hintergrund der Studie

Bei den geplanten Baggerarbeiten werden an der Baggerstelle Feinsedimente aufgewirbelt oder angesaugte Feinsedimente technisch bedingt teilweise wieder freigesetzt. Dadurch bilden sich in Verbindung mit der natürliche Wasserströmung Sedimentationsfahnen. Bei der Verklappung an der Klappstelle entstehen ebenfalls Sedimentfahnen. Zur Beurteilung der Auswirkungen durch die geplanten Baggerarbeiten hat die TdV durch IMDC eine Studie zur Ausbreitung von Sedimentfahnen während der Baggerarbeiten erstellen lassen. Die Studie betrachtet sowohl die Ausbreitung an der Baggerstelle als auch an der Verklappungsstelle K01. Die Studie ist als "21.02_Bericht über die Ausbreitung von Sedimentfahnen_2025.05" den Antragsunterlagen. Nachfolgend werden die wesentlichen Ergebnisse der Studie kurz beschrieben. Die Ergebnisse der Studie sind Basis für die Beurteilung der Umweltauswirkungen.

21.4.2 Datenmodell und Rahmenbedingungen

In der Studie wurde ein Modell zur Ausbreitung von Sedimentfahnen verwendet, um die Ausbreitung von Feinsedimenten zu untersuchen, die durch die Baggerarbeiten im Wendebecken des kurzfristigen Projekts freigesetzt werden. Dazu wurde ein bestehendes hydrodynamisches TELEMAC-3D-Modell mit dem Sedimenttransportmodul GAIA gekoppelt. Es wurde nur die Ausbreitung der durch die Baggerarbeiten freigesetzten überschüssigen Sedimente simuliert. Natürliche Sedimente in Suspension wurden nicht berücksichtigt. Repräsentative Sedimentfreisetzungsszenarien würden für durchschnittliche Spring- und Nipptidenbedingungen erstellt (in Übereinstimmung mit dem Methodenbericht), die eine Bandbreite bieten, innerhalb derer die Modellergebnisse interpretiert werden können.

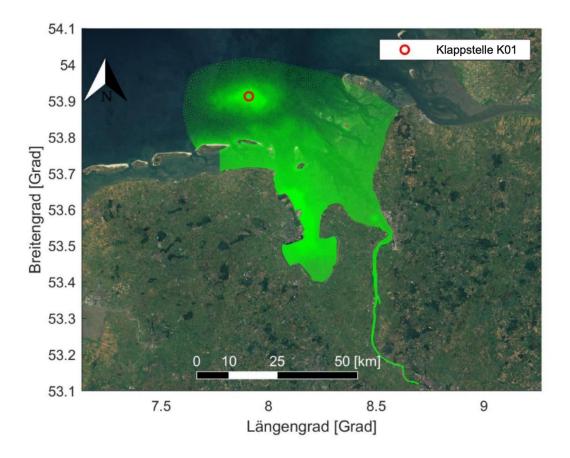


Abbildung 3: Berechnungsgitter des Jade-Weser-Modells mit zusätzlichen Gitteroptimierungen rund um die Verklappstelle K01.

21.4.2.1 Szenarien

Es wurden zwei Szenarien betrachtet: ein <u>Referenzszenario</u> und ein Szenario mit einem <u>hohen Anteil an Feinstoffen</u>. Ausgehend von der minimalen durchschnittlichen Hintergrundkonzentration an Schwebstoffen im Projektgebiet von 250 mg/L wird ein Schwellenwert mit einem gleichen Wert gewählt, um eine Grundlage für den Vergleich der Szenarienergebnisse zu schaffen. Die Auswirkungen der Szenarien wurden durch Überprüfung der maximalen Konzentrationen innerhalb der Simulationszeiträume bewertet.

Rev. 05 15.03.2024 Seite 9 von 17

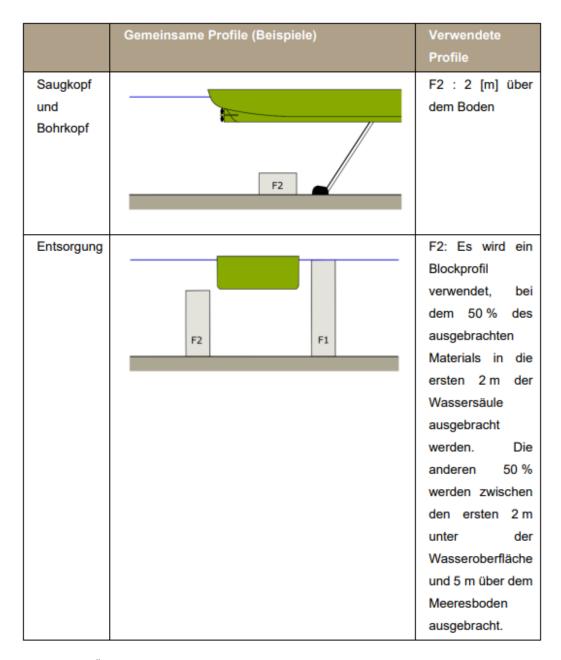


Abbildung 4: Überblick über die verschiedenen Arten von Baggerfreisetzungen und die vertikalen Profile, die in das Modell einbezogen werden

21.4.2.2 Ergebnisse

Die Ergebnisse zeigen, dass die Form der Sedimentfahnen mit der Form der Gezeitenellipsen in der Jademündung übereinstimmt, d. h. in der Nähe des Baggerbereichs des Wendebeckens länglich und in der Nähe der Verklappstelle K01 runder geformt ist. Für das Referenzszenario (während Springtidenbedingungen) wird der Bereich, in dem die Spitzenkonzentration der Sedimente das Doppelte des festgelegten Schwellenwerts von 250 mg/l betragen würde, zwar überschritten, allerdings nur sehr lokal innerhalb des Wendebeckens auf einem Sandrücken und innerhalb einer Ellipse mit einem größeren Radius von 1 km um den Einleitungspunkt an der Verklappstelle. Bei einem hohen angenommenen Anteil an Feinstoffen (Obergrenze der Feldbeobachtungen) nimmt die Ausbreitung der Überschreitung des Schwellenwerts von 250 mg/l an der Baggerstelle nicht zu, wohingegen der größere Radius der ellipsenförmigen Form der Ausbreitung der Überschreitung an der Verklappstelle auf bis zu 2 km zunimmt.

Bei Nipptidenbedingungen gibt es für das Referenzszenario an der Baggerstelle keine Überschreitung, wohingegen an der Verklappstelle eine Überschreitung innerhalb einer Ellipse mit einem großen Radius von knapp unter 1 km um die Verklappstelle festgestellt wird. Bei einem hohen angenommenen Anteil an Feinstoffen (Obergrenze der Feldbeobachtungen) nimmt die Überschreitung im Baggerbereich nicht zu, wohingegen der größere Radius der ellipsenförmigen Form der Ausbreitung der Überschreitung an der Verklappstelle auf bis zu 1,5 km zunimmt.

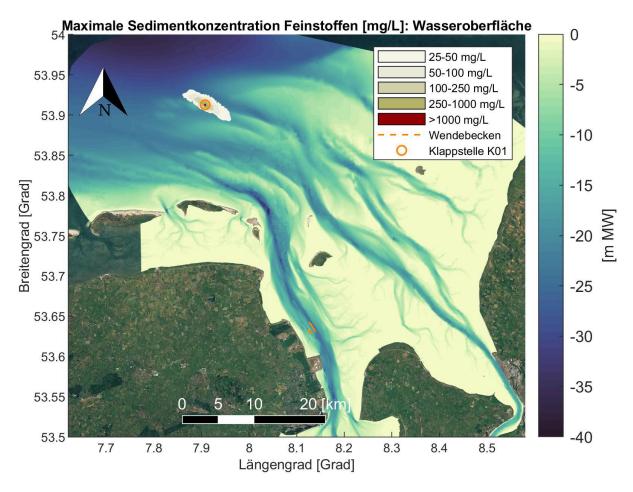


Abbildung 5: Maximale angetroffene Sedimentkonzentration [mg/L] von Feinstoffen (< 210 [µm]) in der Mitte der Wassersäule während des Simulationszeitraums. Baggerszenario A, Springbedingungen

21.5 Kolkschutz

Die TdV hat IMDC mit der Bewertung der Kolkbildung an den Strukturen des Schiffsanlegers (Dalben und Pontonpfähle) und der Dimensionierung erforderlicher Kolkschutzmaßnahmen beauftragt. Die Ergebnisse finden sich in der Studie "21.03_Kolkschutzbewertung Meeresbauwerke_2038.05"

21.5.1 Kolkschutz der Dalben

Strömungsbedingungen

Die Berechnungen wurden unter Berücksichtigung einer maximalen Strömungsgeschwindigkeit von 1,7 m/s bei einem Wasserstand von +3,88 m SKN für Flut und 1,6 m/s bei einem Wasserstand von +2,75 m SKN für Ebbe durchgeführt.

Höhenprofil

Error! Reference source not found. Abbildung 6 zeigt das für die Berechnung des Kolkschutzes verwendete Höhenprofil.

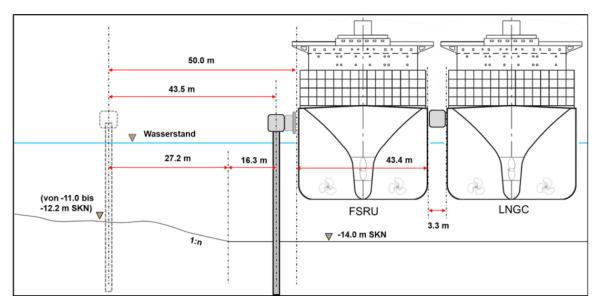


Abbildung 6: Kolkschutz berücksichtigte Lastfälle für den Schlepper bei der Abfahrt von LNG-Schiffen

Kolktiefe aufgrund von Schiffspropellern

Die maximale Kolktiefe um die Pfähle wird auch unter Berücksichtigung der Wirkung der Schiffspropellern gemäß den PIANC-Richtlinien zum Schutz von Liegeplatzstrukturen vor Kolk durch Schiffe ermittelt. Hierzu gehören insbesondere Schiffsbewegungen der LNGC-Tanker und der Schlepper in der Nähe des Anlegers.

Möglichkeiten zur Kolkbildung

Die Möglichkeit einer Kolkbildung entlang eines einzelnen Dalbenpfahls wurde geprüft. Es wurde festgestellt, dass bei gleichmäßiger Strömung und nichtbindigem Boden die maximale Kolktiefe zwischen 6,5 und 10,1m liegt. Die Kolkwirkung durch eine Pfahlgruppe wurde aufgrund des Abstands zwischen den einzelnen Pfählen als nicht relevant angesehen.

Rev. 05 15.03.2024 Seite **12** von **17**

Dimensionierung des Kolkschutzes um die Dalben

Auf der Grundlage der Ergebnisse wird die erforderliche Mindestschutzabmessung vom Pfahlrand mit 9,0 m angesetzt. Dieses Maß entspricht einer Mindestabmessung des Kolkschutzes von 2xDpile, wie in Abbildung 7 dargestellt.

Der Gesamtdurchmesser des kreisförmigen Kolkschutzes um die Pfähle des LNG-Terminals beträgt daher 5xDpile, was 22,5 m entspricht.

Erforderliches Gesteinsvolumen für den Kolkschutz um die Dalbenpfähle

Tabelle 2 und Abbildung 7**Error! Reference source not found.** fassen die Hauptgeometrie und das minimal erforderliche Gesteinsvolumen des Kolkschutzes der Brust- und Festmachdalben unter Berücksichtigung der Schicht aus Wasserbausteinen (LMA 5/40) und der Filterschicht (32/90 mm) zusammen. Das angegebene erforderliche Mindestvolumen der Felssicherung pro Pfahl wird unter der Annahme berechnet, dass die Felsen vor dem Rammen installiert werden

Tabelle 2: Mindestabmessungen Kolkschutz Dalben

		Anlege (Brust)dalben	Festmachdalben
Durchmesser des Pfahls, Dpile	m	4,50	4,50
Mindestdicke des Kolkschutzes	m	1,00	1,00
Mindestdicke der Schicht aus Wasserbausteinen	m	0,60	0,60
(LMA 5/40)			
Mindestdicke der Filterschicht (32/90 mm)	m	0,40	0,40
Mindestabmessung des Kolkschutzes, Lext*	m	9,0	9,0
Mindestvolumen der Schicht aus Wasserbausteinen (LMA 5/40) pro Pfahl	m ³	410	265
Mindestvolumen Filterschicht (32/90 mm) pro Pfahl	m ³	189	176

-

^{*} vom Pfahlrand aus

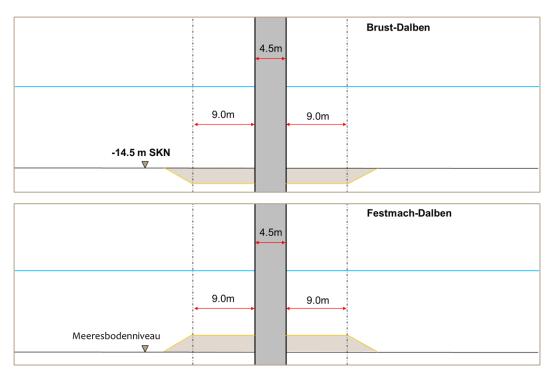


Abbildung 7 Skizze des Querschnitts mit der Mindestabmessung des Kolkschutzes für Brustdalben (oberes Feld) und Festmachdalben (unteres Feld)

21.5.2 Kolkschutz der Pontonpfähle

Bemessungstiefe

Die Meeresbodenhöhe an den Ponton-Pfahlstandorten reicht gemäß der letzten Erkundung vom 09.01.2024 von -10,8 bis -10,3 m SKN. Bei der Bemessung des Kolkschutzes um die Ponton-Pfähle wird konservativ eine Meeresbodenhöhe von -10,0 m SKN angenommen.

Dimensionierung des Kolkschutzes um die Pontonpfähle

Auch hier wird die Wirkung der Schiffspropeller gemäß den PIANC-Richtlinien zum Schutz von Liegeplatzstrukturen vor Kolk durch Schiffe berücksichtigt.

Auf der Grundlage der Ergebnisse wird die erforderliche Mindestschutzabmessung vom Pfahlrand aus mit 5,0 m angesetzt, wie in Abbildung 8 dargestellt.

Die erforderliche Mindestgewichtsklasse der Kolkschutzdeckschicht ist LMA 5/40, bei einer Schichtdicke von 0,60 m. Zwischen der Deckschicht und dem Meeresboden muss eine Filterschicht mit einer Dicke von 0,40 m und der Gewichtsklasse 32/90 mm eingebaut werden. Die Gesamtdicke des Kolkschutzes um die Pfähle beträgt daher 1,00 m.

Angesichts dessen, dass der Abstand zwischen den Ponton-Pfählen aller Dreiergruppen kleiner ist als die erforderliche Mindestgröße des Schutzes, wurde die planimetrische Konfiguration des Kolkschutzes um die Pfähle herum optimiert. Ziel ist, einen durchgehenden Schutz im Bereich nahe der Ponton-Anlage zu schaffen und eine erforderliche Mindestausdehnung des Schutzes ab dem Pfahlrand mit einer Breite von 5,0 m sicherzustellen. Dieser durchgehende Schutz ist so ausgelegt, dass er an den Kolkschutz um die Pfähle der Vertäudalben MD4, MD5 und MD6 anschließt. Siehe Abbildung 9.

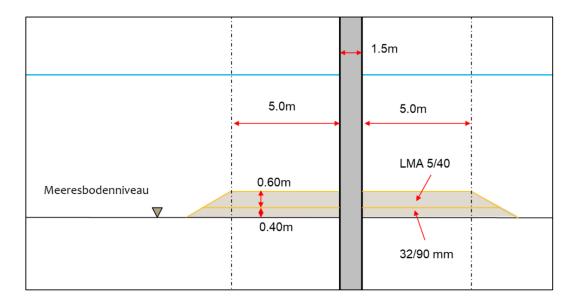


Abbildung 8: Skizze des Querschnitts mit der Mindestabmessung des Kolkschutzes für die Pontonpfähle



Abbildung 9: Durchgehende Kolkschutz rund um die Pontonpfähle und MD4, MD5 und MD6

Impressum

WASSERRECHTLICHER PLANFESTSTELLUNGSANTRAG FÜR DIE ERRICHTUNG EINES FSRU-SCHIFFSANLEGERS MIT LIEGEWANNE UND ZUFAHRTBEREICH LNG VOSLAPPER GRODEN NORD 2 TEIL B - ANTRAGSUNTERLAGEN 21 HYDROMORPHOLOGISCHE AUSWIRKUNGEN, KOLKSCHUTZ

AUFTRAGGEBER

FSRU Wilhelmshaven GmbH

AUTOR

Georg Fank (extern) Lena de Koning

DATUM

15. März 2024

Über Arcadis

Arcadis ist das führende globale Planungs- und Beratungsunternehmen für die natürliche und die vom Menschen gestaltete Umwelt. Durch die weltweite Bündelung von lokalem Wissen und die Kombination unserer Expertise mit neusten digitalen Errungenschaften erzielen wir herausragende und nachhaltige Ergebnisse für unsere Kunden und deren Abnehmer. Wir sind 36.000 Menschen, die in mehr als 70 Ländern tätig sind und einen Umsatz von 4,2 Milliarden Euro erwirtschaften (basierend auf Pro-forma-Zahlen für das gesamte Jahr 2021). Wir unterstützen UN-Habitat mit Wissen und Expertise, um die Lebensqualität in schnell wachsenden Städten auf der ganzen Welt zu verbessern.

www.arcadis.com

Arcadis Germany GmbH

EUREF-Campus 10 10829 Berlin Deutschland

T 030 767585900