ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. No.: TES-WHV-VGN	Statische	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC -
TES Code: TES-WHV-VGN-FSRU	Pfahlfundamente		2003.10 Seite 1 von 84

Statische Berechnung Pfahlfundamente

1. Ausfertigung
In statischer Hinsicht geprüft
Prüfnummer Hamburg, den
2023-D122 18.10.2023

Dr.-Ing. Rainer Grzeschkowitz
Dr.-Ing. Olaf Drude (SFI)
Dipl.-Ing.(FH) Karsten Holste
Prüfingenieure für Bautechnik
gem. Prüfverordnung PVO vom 14.02.2006

Veritaskai 8 • 21079 Hamburg Tel.: +4940790001-0 (Fax: -44) • www.wk-consult.com

			DocuSigned by:	DocuSigned by:		
11. Issue	10	13.10.2023	J.Maasym	y: N. Wernerding Weensigne	byJ. de Groot-Docusigned by:	ZUR GENEHMIGUNG
			D. Philippin 1000 Populippi	A.Rosponii	Jaap de G DBA49F 235B83DCB77648	root
10. Issue	09	11.10.2023	J.Maas D2105D51100	E44N. Werner F53BE4BD0	DBA49F235B83DCB77648	Inoffizielle Vorab-Version ohne
				D. Philippi		Ergebnisse
9. Issue	08	20.06.2023	J.Maas	N. Werner		Updated
						ZUR GENEHMIGUNG
8. Issue	07	16.05.2023	J.Maas	N. Werner		Updated Load Definition
				A.Rosponi		ZUR GENEHMIGUNG
7. Issue	06	28.04.2023	J.Maas	D.Philippi		Updated Load Definition
				A.Rosponi		ZUR INFORMATION
6. Issue	05	11.04.2023	J. Maas	D.Philippi		Updated Design,
				A.Rosponi		ZUR INFORMATION
				A.Krug		
5. Issue	04	31.03.2023	J. Maas	D.Philippi		Updated Design,
				A. Rosponi		ZUR INFORMATION
				A. Krug		
4. Issue	03	20.02.2023	J. Maas	D. Philippi		Updated Design,
				H. Koch		ZUR INFORMATION
				A. Krug		
3. Issue	02	23.01.2023	J. Maas	D. Philippi	J. de Groot	Updated Design,
				H. Koch		FOR INFORMATION
				A. Krug		
2. Issue	01	16.12.2022	J. Maas	D. Philippi	J. de Groot	Updated Mudline Definition;
				A. Rosponi		Added Annex A; incl. of multi-pile
						foundation verification
1. Issue	00	09.12.2022	J. Maas	D. Philippi	J. de Groot	-
				A. Rosponi		
Status	Issue	Date	Prepared by	Checked by	Approved by	Remark

Struktur

TES Proj. Nr.: TES-WHV-VGN

TES Code: TES-WHV-VGN-FSRU

Statische Pfahlfundamente Berechnung

Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10

Seite 2 von 84

Table of Content

1	Einieitung5	
1.1	Allgemeines	5
1.2	Arbeitsumfang	6
1.3	Revisionsbeschreibung	6
1.4	Abkürzungen	6
1.5	Referenzdokumente	8
2	Zusammenfassung der Ergebnisse9	
2.1	Allgemeines	<u>9</u>
2.2	Axiale Pfahltragfähigkeit (ULS)	<u>9</u>
2.3	Laterale Pfahltragfähigkeit (ULS)	1C
2.4	Nachweise der Gebrauchstauglichkeit (SLS)	11
2.4.1	Grenzverformung am Pfahlfuß (EL -59,5 m SKN)	11
2.4.2	Grenzverformung am Meeresboden (EL -14,2 m SKN bzw. EL-11,2 m SNK)	12
2.4.3	Grenzverformung am Pfahlkopf (EL +11,0 m SKN)	13
2.5	Struktureller Nachweis der Pfähle	14
2.5.1	Betriebszustand (ULS)	14
2.5.2	Einhebezustand (ULS)	14
2.6	Kritische Bereiche	14
2.7	Schlussfolgerung	15
3	Normen und Regelwerke	
4	Allgemeines17	
4.1	Einheiten	17
4.2	Software	17
4.3	Allgemeine Material Eigenschaften	18
5	Projektbeschreibung19	
5.1	Übersicht des Liegeplatzes / FSRU Terminal Layout und Hauptbestandteile	19
5.2	Beschreibung der Dalben- Plattformen	21
5.2.1	Plattformgewichte und Schwerpunkte	21
5.2.2	Plattformflächen	22
5.3	Beschreibung der Dalben-Pfähle	23

Struktur

TES Proj. Nr.: TES-WHV-VGN

6

TES Code: TES-WHV-VGN-FSRU

Statische Pfahlfundamente Berechnung

Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10

Seite 3 von 84

6.1	Allgemeines	25
6.2	Bemessungsprofil für BD1	26
6.3	Bemessungsprofil für BD2	27
6.4	Bemessungsprofil für BD3	28
6.5	Bemessungsprofil für BD4	29
6.6	Bemessungsprofil für MD1	30
6.7	Bemessungsprofil für MD2	31
6.8	Bemessungsprofil für MD3	32
6.9	Bemessungsprofil für MD4	33
6.10	Bemessungsprofil für MD5	34
6.11	Bemessungsprofil für MD6	35
7	Nachweismethoden36	
7.1	Allgemeines zur Nachweisführung	36
7.2	LRFD-Methode	36
7.3	Allgemeine Design-Last / Entwurfslast	36
7.4	Allgemeine Lastfaktoren und Kombinationen im Grenzzustand der Tragfähigkeit (ULS)	38
7.5	Allgemeine Lastfaktoren und Kombinationen im Grenzzustand der Gebrauchstauglichkeit (SLS)	38
7.6	Zusätzliche Lastfaktoren für den Hebevorgang	39
7.7	Design-Widerstände	40
7.7.1	Allgemeine Design Widerstände	40
7.7.2	Geotechnische Nachweise der Druckpfähle	40
7.7.3	Strukturelle Nachweise des Stahlbaus der Pfähle	40
7.8	Nachweis der Axialen Pfahltragfähigkeit (Äußere) - ULS	41
7.9	Nachweis der Lateralen Pfahltragfähigkeit (Äußere) - ULS	43
7.10	Nachweise der Gebrauchstauglichkeit - SLS	44
7.11	Nachweis der Strukturellen Pfahltragfähigkeit (Innere)	45
8	Lasten und Lastfallkombinationen46	
8.1	Allgemeine Lasten	46
8.2	Eigengewichte (LC1)	47
8.3	Brückenreaktionslasten (LC2)	48
8 4	Fenderanlegelast (1 (3)	40

Struktur

TES Proj. Nr.: TES-WHV-VGN

TES Code: TES-WHV-VGN-FSRU

Statische Pfahlfundamente Berechnung

Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10

Seite 4 von 84

8.5	Ankerhakenlast (LC4)	50
8.5.1	Ankerhakenlasten aus TQRHs bei BDs	50
8.5.2	Ankerhakenlasten aus QQRHs bei MDs	50
8.6	Wellen- und Strömungslast (LC5)	5
8.7	Windlast (LC6)	55
8.8	Treibeislast (LC 7)	56
8.9	Schneelast (LC8)	57
8.10	Verkehrslast (LC9)	58
8.11	Übersicht der einzelnen Lastfälle	59
8.12	Lastfallkombination	60
9	Nachweisführung und Ergebnisse61	
9.1	Model Beschreibung	6
9.1.1	Allgemeine Beschreibung	6
9.1.2	Wasserwechselzone und Korrosionszuschlag	62
9.1.3	Geflutete Querschnitte	62
9.1.4	Kolkeffekte	62
9.1.5	Mariner Bewuchs	62
9.2	Randbedingungen	62
9.3	Ergebnisse	6
9.3.1	Übersicht der Reaktionslasten auf Meeresboden für Einzellastfälle und Kombinationen	6
9.3.2	Axiale Pfahltragfähigkeiten	65
9.3.3	Laterale Pfahltragfähigkeiten	66
9.3.4	SLS-Verformungen	77
9.3.5	Innere strukturelle Pfahltragfähigkeit	80
10	ULS-Pfahlnachweis für den Einhebezustand82	
10.1	Allgemeine Beschreibung der Hebe-Analyse	82
10.2	Statisches System	82
10.3	Lasten und Lastfaktoren	8
10.4	Spannungsergebnisse	84
10.5	Verformungsergebnisse	84

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 5 von 84

1 Einleitung

1.1 Allgemeines

Das Bundesministerium für Wirtschaft und Klimaschutz (BMWK) ist im September 2022 an die Tree Energy Solutions GmbH (TES) herangetreten und hat die gemeinsame Realisierung eines schwimmenden Flüssigerdgas (Liquefied Natural Gas – LNG)-Importterminals (Floating Storage and Regasification Unit – FSRU) angefragt. Das BMWK hat dazu im Februar 2023 die FSRU "Excelsior" für maximal 60 Monate gechartert. Das Projekt soll in Kooperation mit E.ON und ENGIE realisiert werden. Als Vorhabenträgerin wurde die "FSRU Wilhelmshaven GmbH" gegründet.

Die Entwicklung umfasst einer schwimmenden Speicher- und Regasifizierungseinheit (Floating Storage and Regasification Unit, FSRU) zum Import von LNG. Das Terminal wird an das deutsche Gasnetz angeschlossen und als Fast-Track-Projekt ausgeführt.

Der KUNDE (ENGIE/TES) hat einen Vertrag mit IMDC. Dieser sieht technische Unterstützung durch IMDC für die Meeresarbeiten sowie für Modellierungsstudien vor, die in den Genehmigungsantrag einfließen werden.

Abbildung 1-1: Übersicht Projektierungsfläche (Google Earth)

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 6 von 84

1.2 Arbeitsumfang

Dieser Bericht beinhaltet die <u>Beschreibung</u>, <u>Nachweisführung und Zusammenfassung der Ergebnisse der Standsicherheitsberechnung aller Anlege- und Anker-Dalben-Pfähle</u>. Er enthält die folgenden Nachweise:

- Äußere (geotechnische) Pfahl-Tragfähigkeit für den Grenzzustand der Tragfähigkeit (ULS) für alle Pfähle inkl. axialer und lateraler Tragfähigkeit
- Nachweise der Gebrauchstauglichkeit (SLS)
- <u>Innere (strukturelle) Pfahl-Tragfähigkeit</u> für den Grenzzustand der Tragfähigkeit (ULS) für alle Pfähle für den Betriebszustand
- <u>Strukturelle Pfahl-Tragfähigkeit</u> für den Grenzzustand der Tragfähigkeit (ULS) für alle Pfähle für den Einhebe-Installationszustand

Es sei an dieser Stelle darauf hingewiesen, dass dieses Dokument keine Analysen und Informationen zur Pfahlrammung, Rammbarkeit und der Pfahl-Ermüdung infolge Rammen beinhaltet.

Für die Rammbarkeitsanalysen wird auf den Installations-Auftragnehmer verwiesen.

Alle bisherigen, vorläufigen Pfahlrammuntersuchungen haben gezeigt, dass die Ermüdung infolge Pfahlrammen vernachlässigbar klein war. Deswegen wird dieser Nachweise (FLS) hier als nicht maßgebend betrachtet.

1.3 Revisionsbeschreibung

Rev. 09 & 10

In dieser Revision wurde der gesamte Bericht überarbeitet. Deswegen wurde auf die Nachverfolgung und Markierung der Änderungen verzichtet.

Revision 09 war eine inoffizielle Vorab-Version ohne Ergebnisse. Diese Revision 10 beinhaltet nun auch die Ergebnisse für alle 10 Pfähle.

1.4 Abkürzungen

Die folgenden Abkürzungen werden in diesem Dokument verwendet:

Tabelle 1-1: Projektspezifische Abkürzungen

Abkürzung	Beschreibung
ENGIE:	ENGIE SA (Kunde)
IMDC:	INTERNATIONAL MARINE AND DREDGING CONSULTANTS
OV:	Tractebel Overdick GmbH
TES:	Tree Energy Solutions Belgium BV (Konsortionalpartner mit ENGIE)

Folgende Abkürzungen werden in diesem Dokument verwendet:

Tabelle 1-2: Allgemeine Abkürzungen

Abkürzung	Beschreibung
AFC:	Approved For Construction / Geprüft für den Bau
ALS:	Accidental Limit State / Außergewöhnliche Lastfallkombination

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 7 von 84

ASR: Ar	nerican Petroleum Institute beitsstättenregeln	
	-	
B: Br	idge / Brücke	
BD: Be	erthing Dolphin / Anlegedalben	
BOS: Bo	ottom of Steel / Unterkante Stahlbau	
DIN: De	eutsches Institut für Normung	
DNV: De	et Norske Veritas	
EC: Eu	rocode	
EL: Ele	evation / Höhenabgabe	
EN: Eu	ropäische Norm	
FLS: Fa	tigue Limit State / Grenzzustand der Ermüdung	
FRSU: Flo	pating Storage and Regasification Unit	
HAT: Hig	ghest Astronomical Tide / Höchster Gezeitenwasserstand	
HGzw: Hö	ochster Gezeitenwasserstand	
HSE: He	ealth Safety Environment / Gesundheits- und Sicherheitsumgebung	
HThw: Hö	ochster Tide-Hochwasserstand (Surge Level Max.)	
IC: In:	stallation Contractor / Auftragnehmer Installation	
	ternational Organization for Standardization / Internationale Organisation für ormung	
LAT / SKN: Lo	west Astronomical Tide / Niedrigster Gezeitenwasserstand / Seekartennull	
LC: Lo	ad Case / Lastfall	
LCOM: Lo	ad Case Combination / Lastfallkombination	
LNG: Lic	quid Natural Gas / Flüssiggas	
	ad and Resistance Factored Design / Design mit Teilsicherheitsfaktoren auf st- und Widerstandsseite	
MD: Mo	ooring Dolphin / Ankerdalben	
ML: M	udline / Meeresboden	
MLS: M	udline Suspension / Meeresboden Suspension	
MSL: Mo	Mean Sea Level / Mittlerer Meeresspiegel	
MWS: Ma	Marine Warranty Surveyor / Sachverständiger für Schiffs-Versicherer	
NTnw: Ni	edrigster Tide-Niedrigwasserstand	
OS: Of	fshore Standard	

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 8 von 84

Abkürzung	Beschreibung
QA/QC:	Quality Assurance / Quality Control / Qualitätssicherung / Qualitätskontrolle
QRH:	Quick Release Hook / Schnell-Löse-Haken
QQRH:	Quadruple Quick Release Hook / Vierfacher Schnell-Löse-Haken
RAM:	Responsibility Assignment Matrix / Verantwortungszuordnungsmatrix
RP:	Recommended Practice/ Empfohlene Praxis
SI:	System International / Internationales Einheitensystem
SHL:	Static Hook Load / Statische Hakenlast
SLS:	Serviceability Limit State / Grenzzustand der Gebrauchstauglichkeit
Spec / SPE:	Specification / Spezifikation
SWL:	Safe Working Load / Sichere Arbeitslast
T&I:	Transport & Installation
TQRH:	Triple Quick Release Hook / Dreifacher Schnell-Löse-Haken
TRAS:	Technische Regeln für Anlagensicherheit
TS:	Topsides (hier ist das Plattformdeck gemeint)
UC:	Unity Check / Auslastungsgrad
ULS:	Ultimate Limit State / Grenzzustand der Tragfähigkeit
U.N.O:	Unless Noted Otherwise / wenn nicht anders angegeben
UTM:	Universal Transversaler Mercator

1.5 Referenzdokumente

Dieser Bericht baut auf folgenden Referenzdokumenten auf:

- [1.] OV; TES-WHV-VGN-FSRU-ST-DOC -2001.08; "Entwurfsgrundlagen"; 09/ 2023
- [2.] OV; TES-WHV-VGN-FSRU-ST-DOC-2036.08; "Strukturzeichnung Pfähle"; 10/2023
- [3.] ACP Geptechnik; 23A012.00.00 Rev.0.1; "Geotechnischer Bericht Anlegestelle (Jetty)", 10/2023
- [4.] Trelleborg, "Fender System Brochure"
- [5.] Mampaey Offshore Industries B.V.; P230251.MHC.150.403.001, Rev. 0; "Quick Release Mooring Unit Triple Hook 150 tons"; 2023
- [6.] Mampaey Offshore Industries B.V.; P230251.MHC.150.404.001, Rev. o; "Quick Release Mooring Unit Quadruple Hook 150 tons"; 2023
- [7.] IMDC, "Dynamische Mooring Analysis DMA- Design Loads", July 2023
- [8.] IMDC; "Bearthing and Mooring Design Loads"; 2023-06-23

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 9 von 84

2 Zusammenfassung der Ergebnisse

2.1 Allgemeines

Alle 10 Dalben werden auf Einzelpfählen mit einem einheitlichen Außendurchmesser von jeweils D = 4,5 m und einer einheitlichen Wandstärke von t = 60 mm gegründet (identische Pfahltypen).

Die Dalben sind über Bootsanlegestellen vom Ufer aus erreichbar und durch Verbindungsbrücken miteinander gekoppelt.

Alle im Folgenden aufgelisteten Tragfähigkeits- und Gebrauchstauglichkeitsnachweise erfolgen dann DIN bzw. DIN EN Normen.

2.2 Axiale Pfahltragfähigkeit (ULS)

Der Nachweis der axialen Pfahltragfähigkeit wird nach DIN 1054, siehe Ref. [VII.], geführt.

Die folgende Tabelle gibt einen Überblick zu der ermittelten charakteristischen axialen Pfahltragfähigkeiten. Mit dem Widerstandsbeiwert γ_R wie in Kapitel 7.7.2 beschreiben, wird die Design-Tragfähigkeit und mit der maximalen axialen Design-Last aus LKOM 1 verglichen (siehe Kapitel 8.12). Die entsprechenden resultierenden Auslastungen der axialen Pfahltragfähigkeit sind in der folgenden Tabelle zusammengefasst.

Tabelle 2-1: Zusammenfassung der axialen Pfahltragfähigkeit

Dalbenpfahl	Design- Axiallast Sd [kN]	Charakt. Axiale Tragfähigkeit R _k [kN]	Widerstands- beiwert γ _R (Druckpfahl)	Design Axiale Tragfähigkeit Rd = Rk/γR [kN]	Auslastung
BD1	-10.217,8	-48.701,4	1,4	-34.786,7	29%
BD2	-10.217,8	-46.329,5	1,4	-33.092,5	31%
BD3	-10.217,8	-48.743,8	1,4	-34.817,0	29%
BD4	-10.217,8	-55.403,1	1,4	-39.573,6	26%
MD1	-8.903,9	-60.566,9	1,4	-43.262,1	21%
MD2	-8.903,9	-52.453,2	1,4	-37.466,6	24%
MD3	-8.903,9	-55.356,7	1,4	-39.540,5	23%
MD4	-8.903,9	-47.882,4	1,4	-34.201,7	26%
MD5	-8.903,9	-51,344,2	1,4	-36.674,4	24%
MD6	-8.903,9	-53.817,8	1,4	-38.441,3	23%

Die maximale Auslastung der axialen Pfahltragfähigkeit tritt bei Pfahl BD2 auf und resultiert zu 31%.

Insgesamt kann die axiale Pfahltragfähigkeit aller 10 Dalbenpfähle, insbesondere unter Berücksichtigung der hier verwendeten konservativen Nachweismethode ohne innere Mantelreibung und ohne Spitzenwiderstand, als unkritisch eingestuft werden.

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 10 von 84

2.3 Laterale Pfahltragfähigkeit (ULS)

Die Ergebnisse der lateralen Pfahltragfähigkeit (ULS) und die resultierenden Auslastungen sind in der folgenden Tabelle zusammengefasst.

Tabelle 2-2: Zusammenfassung der lateralen Pfahltragfähigkeit

Dalbenpfahl	Design- Laterallast Sd [kN]	Charakteristische Laterale Tragfähigkeit R _k [kN]	Widerstands- beiwert γ _R (Druckpfahl)	Design laterale Tragfähigkeit R _d = R _k /γ _R [kN]	Auslastung
BD1	10.135,0	1.029.960	1,4	735.685,4	1,4%
BD2	10.135,0	1.022.492	1,4	730.351,8	1,4%
BD3	10.135,0	965.109	1,4	689.363,3	1,5%
BD4	10.135,0	1.072.140	1,4	765.814,4	1,3%
MD1	7.086,6	1.470.229	1,4	1.050.163,8	0,7%
MD2	7.086,6	1.364.071	1,4	974.336,7	0,7%
MD3	7.086,6	1.254.132	1,4	895.808,9	0,8%
MD4	7.086,6	1.115.764	1,4	796.974,1	0,9%
MD5	7.086,6	1.509.740	1,4	1.078.385,4	0,7%
MD6	7.086,6	1.439.077	1,4	1.027.911,9	0,7%

Die maximale Auslastung der lateralen Pfahltragfähigkeit tritt bei Pfahl BD3 auf und resultiert zu 1,5 %.

Insgesamt ist die Auslastung der lateralen Pfahltragfähigkeit noch geringer als die der axialen Pfahltragfähigkeit, somit ebenso unkritisch und nicht maßgebend.

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 11 von 84

2.4 Nachweise der Gebrauchstauglichkeit (SLS)

Für den Nachweis der Gebrauchstauglichkeit werden die folgen 2 Kriterien überprüft:

- Maximale horizontale Auslenkung am Pfahlfuß (EL -59,5 m SKN) und am Meeresboden verglichen der Auslenkung an gleicher Stelle eines unendlich langen Pfahls
- Maximale horizontale Auslenkung am Pfahlkopf auf Höhe der Plattform (EL +11,0 m SKN) kleiner als 50cm

Für die weitere Informationen zur Definition der Grenzkriterien wird auf Kapitel 7.10 verwiesen.

2.4.1 Grenzverformung am Pfahlfuß (EL -59,5 m SKN)

Eine Übersicht zu den ermittelten SLS-Verformungen am Pfahlfuß für den Bemessungsfall und für den unendlich langen Pfahl wird mit der folgenden Tabelle geliefert.

Tabelle 2-3: Zusammenfassung der horizontalen SLS-Verformung am Pfahlfuß

Dalbenpfahl	Auslesestelle bei für unendlich langer Pfahl und Bemessungspfahl [m SKN]	Horizontale SLS Verformung am unendlich Langen Pfahl [cm]	Horizontale SLS Verformung am Bemessungspfahl [cm]	Vergleich/ Abweichung
BD1	-59,5	0,014	0,045	224%
BD2	-59,5	0,012	0,048	294%
BD3	-59,5	0,011	0,048	346%
BD4	-59,5	0,014	0,044	205%
MD1	-59,5	0,004	0,005	30%
MD2	-59,5	0,004	0,007	61%
MD3	-59,5	0,007	0,020	175%
MD4	-59,5	0,007	0,021	184%
MD5	-59,5	0,003	0,007	114%
MD6	-59,5	0,004	0,008	92%

Aus dieser Tabelle geht hervor, dass alle ermittelten Verformungen am Pfahlfuß sehr gering sind. Für den Bemessungspfahl tritt die maximale horizontale SLS-Verschiebung am Pfahlfuß von 0,5 mm für BD3 auf und ist als vernachlässigbar klein einzustufen.

Der theoretische Vergleich der ermittelten Verformungen mit denen eines jeweils unendlich langen Pfahls macht aufgrund der sehr kleinen Verschiebungswerte keinen Sinn.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 12 von 84

2.4.2 Grenzverformung am Meeresboden (EL -14,2 m SKN bzw. EL-11,2 m SNK)

Eine Übersicht zu den ermittelten SLS-Verformungen am Meeresboden für den Bemessungsfall und für den unendlich langen Pfahl wird mit der folgenden Tabelle geliefert.

Tabelle 2-4: Zusammenfassung der horizontalen SLS-Verformung am Meeresboden

Dalbenpfahl	Auslesestelle bei für unendlich langer Pfahl und Bemessungspfahl [m SKN]	Horizontale SLS Verformung am unendlich Langen Pfahl [cm]	Horizontale SLS Verformung am Bemessungs-pfahl [cm]	Vergleich/ Abweichung
BD1	-14,20	8,14	8,14	0,0%
BD2	-14,20	9,24	9,25	0,1%
BD3	-14,20	8,82	8,82	0,0%
BD4	-14,20	8,70	8,71	0,1%
MD1	-11,20	4,93	4,94	0,1%
MD2	-11,20	5,15	5,16	0,1%
MD3	-11,20	6,30	6,31	0,1%
MD4	-11,20	5,99	6,00	0,1%
MD5	-11,20	5,89	5,89	0,0%
MD6	-11,20	5,71	5,72	0,1%

Aus dieser Tabelle geht hervor, dass alle ermittelten SLS-Verformungen am Meeresboden kleiner als 10 cm und somit als gering einzustufen sind. Der Vergleich dieser Verformungen mit denen am unendlich langen Pfahl zeigt vernachlässigbare Abweichungen von maximal 0,1 %. Deswegen wird die Verformung am Meeresboden als zulässig und unkritisch beachtet.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 13 von 84

2.4.3 Grenzverformung am Pfahlkopf (EL +11,0 m SKN)

Eine Übersicht zu den ermittelten SLS-Verformungen am Pfahlkopf wird mit der folgenden Tabelle geliefert.

Tabelle 2-5: Zusammenfassung der horizontalen SLS-Verformung am Pfahlkopf

Dalbenpfahl	Auslesestelle bei für Bemessungspfahl [m SKN]	Erlaubte Pfahl- Verformung [cm]	Horizontale SLS Verformung am Bemessungs- pfahl [cm]	Auslastung
BD1	11,00	50,0	39,0	78%
BD2	11,00	50,0	41,5	83%
BD3	11,00	50,0	40,4	81%
BD4	11,00	50,0	40,2	80%
MD1	11,00	50,0	23,8	48%
MD2	11,00	50,0	24,3	49%
MD3	11,00	50,0	26,9	54%
MD4	11,00	50,0	24,9	50%
MD5	11,00	50,0	24,6	49%
MD6	11,00	50,0	24,6	49%

Aus dieser Tabelle geht hervor, dass alle ermittelten Verformungen am Pfahlkopf geringer sind als die bisher im Plattform- und Brücken-Design betrachten maximalen Betriebsverformungen von 50 cm. Die maximale Nutzungsgrad dieses SLS -Kriteriums (Auslenkung am Pfahlkopf < 50 cm) tritt für Pfahl BD 2 auf und resultiert zu 83%.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 14 von 84

2.5 Struktureller Nachweis der Pfähle

2.5.1 Betriebszustand (ULS)

Im Folgenden werden die Auslastungen der inneren Pfahltragfähigkeiten infolge Spannungsauslastungen pro Pfahl dargestellt. Die maximale Spannungsauslastung von 99% tritt für den Pfahl BD1 bei -12, 7 m unter Meeresboden (= -26,7 m SNK) auf. Aufgrund der Vielzahl an eingehenden Konservativitäten bei der Lastaufbringung und Kombination sowie bei den Methoden wird diese relativ hohe Auslastung als unkritisch erachtet.

Tabelle 2-6: Zusammenfassung der ULS-Spannungsauslastungen

Dalbenpfahl	Maximale Spannungsauslastung unter Meeresboden	maximaler UC bei EL in m unter Meeresboden
BD1	**) 99%	12,7
BD2	*) 98%	12,7
BD3	*) 98%	12,2
BD4	**) 97%	12,2
MD1	68%	9,0
MD2	67%	8,5
MD3	69%	10,0
MD4	66%	9,2
MD5	66%	9,7
MD6	66%	9,1

Für weitere Details zur Auslastung des Pfahls wird auf Kapitel Error! Reference source not found. verwiesen.

2.5.2 Einhebezustand (ULS)

Das Einheben der Pfähle besteht im Wesentlichen aus dem horizontalen Anheben (vom Transport-Schiff- oder - Ponton) und dem Aufrichten in eine vertikale Position. Dabei ist der horizontale Zustand mit der freien Biegelänge über die gesamte Pfahllänge der konservative Fall. Dieser Zustand wird auch mit konservativen Annahmen nicht maßgebend. Die maximale Auslastung der Pfahltragfähigkeit resultiert zu 32 %:

Für weitere Informationen zur strukturellen Analyse des Einhebezustands wird auf das Kapitel 9.3.4 verwiesen.

2.6 Kritische Bereiche

Im Rahmen der hier geführten ULS- und SLS - Nachweise wurden keine kritischen Bereiche gefunden.

- *) Einwirkung aus Leine nicht vorhanden
- **) Einwirkungskombination auf sicherer Seite

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 15 von 84

2.7 Schlussfolgerung

Die in diesem Bericht verifizierten Pfähle sind geotechnisch und strukturell ausreichend dimensioniert, um den dargestellten Belastungen im eingebauten Betriebs- sowie im Einhebe-Zustand standzuhalten.

Maßgebend ist die strukturelle Pfahlauslastung im Betriebszustand. Unter Berücksichtigung der folgenden Konservativitäten, resultiert die maximale Auslastung 99 % und liegt somit immer noch unter 100%:

- Zusätzlicher Anpassungsfaktor auf Umweltlasten nach TRAS mit KFI = 1,1
- Volle Fender-Kapazität und Mooring-Haken-Kapazität gleichzeitig wirkend
- Brücken und Plattformlasten mit konservativ maximal abgeschätzten Hebelarmen für Pfahlbiegemomente
- Konservative Lastfaktoren und Lastfallkombinationen nach DIN 1054 ohne Abminderungsbeiwerte $\psi_{o,i}$, statt nach "Empfehlungen des Arbeitsausschusses Ufereinfassungen"
- Voller Korrosionszuschlag für 50 Jahre mit angesetzt

Alle ULS- und SLS-Nachweise sind hier erbracht.

Die Rammbarkeit der Pfähle ist gesondert zu prüfen, und nicht Teil des Arbeitumfangs von OV.

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 16 von 84

3 Normen und Regelwerke

Die folgenden Normen und Regelwerke werden in diesem Dokument benutzt.

- [I.] Deutsches Institut für Normung (DIN); DIN EN 1990, Eurocode o: Grundlagen der Tragwerksplanung; 2021-10
- [II.] Deutsches Institut für Normung (DIN); DIN EN 1993, Eurocode 3: Design of steel structures Part 1-1: Bemessung und Konstruktion von Stahlbauten; 2010-12
- [III.] Deutsches Institut für Normung (DIN); DIN EN 10225; Schweißgeeignete Baustähle für feststehende Offshore-Konstruktionen; 2019-11
- [IV.] Deutsches Institut für Normung (DIN); DIN EN 10025; Warmgewalzte Erzeugnisse aus Baustählen; 2019-
- [V.] Deutsches Institut für Normung (DIN); DIN EN 1990, "Eurocode: Grundlagen der Tragwerksplanung"; 2021-10
- [VI.] Deutsches Institut für Normung (DIN); DIN 18088-1; "Tragstrukturen für Windenergieanlagen und Plattformen Teil 1: Grundlagen und Einwirkungen"; 2019-01
- [VII.] Deutsches Institut für Normung (DIN); DIN EN 1054; "Baugrund Sicherheitsnachweise im Erd-und Grundbau- Ergänzende Regelungen zu DIN EN 1997-1"; 2015
- [VIII.] Deutsches Institut für Normung (DIN); DIN EN 1997-1, "Allgemeine Bemessungsregeln und Regeln für den Hochbau", Oktober 2022
- [IX.] Deutsches Institut für Normung; DIN EN 1991-1-4/NA, "Nationaler Anhang National festgelegte Parameter Eurocode 1: Einwirkungen auf Tragwerke Teil 1-4: Allgemeine Einwirkungen Windlasten; 2010-12
- [X.] Deutsches Institut für Normung; DIN EN 1993, "Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln für den Hochbau"; 2010-12
- [XI.] Deutsches Institut für Normung; DIN EN 1993, "Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 3: Brücken"; 2016
- [XII.] American Petroleum Institute (API); API RP 2GEO; "Geotechnical and Foundation Design Considerations"; 2014-10
- [XIII.] Det Norske Veritas (DNV); DNV-ST-Noo1; "Marine Operations and Marine Warranty"; September 2021
- [XIV.] Det Norske Veritas (DNV); DNV-RP-C205; "Environmental Conditions and Environmental Loads"; September 2021
- [XV.] Deutsche Gesellschaft für Geotechnik e,V; Empfehlungen des Arbeitsausschusses "Ufereinfassungen" Häfen und Wasserstraßen EAU, 2020
- [XVI.] Deutsche Gesellschaft für Geotechnik e,V; Empfehlungen des Arbeitskreises "Pfähle" EA-Pfähle, 2012
- [XVII.] Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUV); TRAS 310; "Grundlagen für die Technische Regel für Anlagensicherheit Vorkehrungen und Maßnahmen wegen der Gefahrenquellen Niederschläge und Hochwasser"; 01-2013
- [XVIII.] Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUV); TRAS 320; "Technische Regel für Anlagensicherheit Vorkehrungen und Maßnahmen wegen der Gefahrenquellen Wind, Schnee- und Eislasten"; 05-2016

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 17 von 84

4 Allgemeines

4.1 Einheiten

In diesem Dokument werden die internationalen SI-Einheitensysteme verwendet. Die folgenden Einheiten werden in allen durchgeführten Analysen verwendet, sofern nicht anders angegeben:

Tabelle 4-1:Einheiten

Parameter	Beschreibung	Eingabe Einheit
Länge	Meter	m
Masse	Metrische Tonne	t
Spannung	Mega Pascal	МРа
Kraft	Kilo Newton	kN
Temperatur	Grad Celsius	°C
Energie	Joule	J
Dichte	Kilogramm je Kubik Meter	kg/m³
Winkel	Grad	o

4.2 Software

Für die statischen Berechnungen wird folgende Software verwendet:

Tabelle 4-2: Software

Position	Software	Version	Beschreibung
[a]	SACS	14.1	Globalanalysen von Offshore- Strukturen

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		TES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 18 von 84

4.3 Allgemeine Material Eigenschaften

Die folgenden Tabellen fassen die in der Analyse verwendeten Materialeigenschaften gemäß Referenz [III.] zusammen.

Tabelle 4-3: Material Eigenschaften – Stahl des Pfahls

Data	Wert
Spezifische Streck-Grenze, f _{y,c} [MPa]	355
Dichte, ρ [kg/m³]	7,850
Elastizitätsmodul, E [MPa]	210,000
Poisson Zahl, v [-]	0,30

Die Nennspannungen und die entsprechenden Mindest-Streck-Grenzen infolge unterschiedlicher Materialstärken sind in der folgenden Tabelle dargestellt. Die Reduzierung der Streckgrenze aufgrund der Materialdicke ist in Ref. [IV.] gegeben.

Tabelle 4-4: Nominale & Mindest-Streck-Grenze

Nominale		Mindest-Streck-Grenze ReH [MPa] bei Raumtemperatur abhängig vom Bereich der Materialstärke [mm]								
Streck Grenze, f _{y,k} [MPa]	t ≤ 16	16 < t≤ 25	25 < t≤ 40	40 < t≤ 63			100 < t≤ 120	120 < t≤ 150	150 < t≤ 200	150 < t≤ 200
355	355	345		335	325	315	295	295	285	275

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 19 von 84

5 Projektbeschreibung

5.1 Übersicht des Liegeplatzes / FSRU Terminal Layout und Hauptbestandteile

Die Gesamtabmessung des Terminals beträgt L = 400 m. Die Orientierung des FSRU längsseits der Anlegestelle ist Nord-Nordwest (321,8°(Ebbe) rwN).

Das neue FSRU-Kurzzeitterminal besteht im Wesentlichen aus den folgenden Hauptkomponenten:

- 6 Ankerdalben mit Plattform (MD: Mooring Dolphins), je 3 an den Enden des Terminals:
 - o MD 1, MD 2 und MD 3 am NW Ende) (BLAU)
 - o MD 4, MD 5 und MD 6 am SO Ende) (BLAU)
- 4 Anlegedalben mit Plattform (BD: Bearthing Dolphins) in der Mitte:
 - o BD1, BD2, BD3 und BD4 (ROT)
- 9 Brücken, um alle Anlegedalben (BD) und Ankerdalben (MD) miteinander zu verbinden
 - o B1 bis B9 (GRÜN)
- 1 Ponton am SO Ende (VIOLETT) (HOLD H1)

Die folgende Abbildung zeigt ein grobes Layout der geplanten Liegeplatzanlage.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 20 von 84

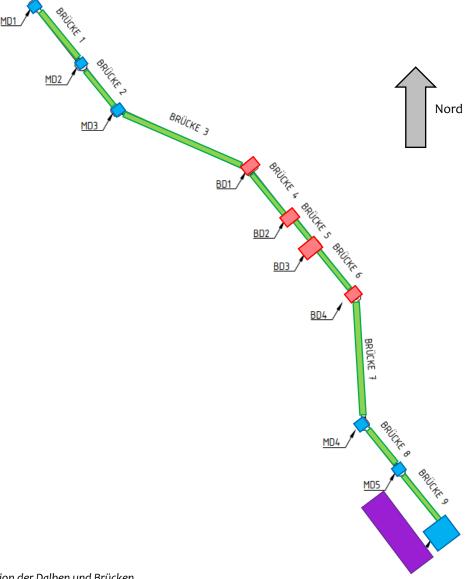


Abbildung 5-1: Definition der Dalben und Brücken

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 21 von 84

5.2 Beschreibung der Dalben- Plattformen

Alle Dalben mit ihren zugehörigen Plattformen können hinsichtlich ihrer Hauptfunktion zunächst einmal in Ankerdalben (Mooring Dolphins MDs) und in Anlegedalben (Bearthing Dolphins BDs) unterschieden werden.

Alle Ankerdalben (MDs) sind vor allem mit Quick Release Hooks (Ankerhaken) ausgestattet, um das FRSU zu vertäuen. Es werden unterschiedliche Ankerhaken verwendet:

- Triple Quick Release Hooks (TQRHs): mit 3 Haken für Leinen (für BD1 und BD4)
- Quadrupel Quick Release Hooks (QQRHs): mit 4 Haken für Leinen (für alle MDs)

Alle Anlegedalben (BDs) sind vor allem mit einem Fender ausgestattet, an den sich das FRSU legen kann. Die beiden äußeren Anlegedalben, BD1 und BD4, sind zusätzlich auch noch mit Ankerhaken (TQRH) ausgestattet.

Alle Dalben BDs und MDs sind mittels Brücken miteinander verbunden.

Die Unterkante der Plattformen (BOS) wird mit 11,0 m SKN / LAT festgelegt und ist gleich mit der geplanten Oberkante der Dalbenpfähle.

5.2.1 Plattformgewichte und Schwerpunkte

Eine Übersicht der Plattformgewichte wird in der folgenden Tabelle aufgeführt. Diese Tabelle enthält alle Stahlgewichte für Balkenprofile m_B , für Platten m_P und für die Gitterroste m_G . Für den jetzigen Projektstatus wird zusätzlich noch ein Gewichtszuschlag von f = 20 % berücksichtigt.

Für 2 Plattformen werden zusätzliche Gewichte infolge Plattform-Ausrüstung berücksichtigt: Für BD3 wird zusätzlich ein konservatives Gewicht des Laufstegturmes mit Treppen von 35 t berücksichtigt. Für MD4 wird das Gewicht beider E&I Container mit 24 t angenommen.

Tabelle 5-1: Plattformgewichte Als richtig vorausgesetzt.

Platt- form	Balken Gewicht m _B [t]	Platten Gewicht m _P [t]	Gitter, Gewicht m _G [t]	Gesamt- Gewicht m [t]	Faktor f	Faktoris. Gewicht m*f=m _f [t]	Ausrüst. m _e [t]	Gesamt- gewicht mt=mf+me [t]	Max, Hebel L [m]	Moment m _t *L [tm]
BD1	20,3	11,4	0,7	32,4	1,2	38,9	0,0	38,9	3,2	124,4
BD2	20,3	9,7	1,2	31,2	1,2	37,4	0,0	37,4	2,8	104,8
BD3	18,4	7,5	1,3	27,2	1,2	32,6	35,0	67,6	2,2	148,8
BD4	22,5	6,1	0,7	29,3	1,2	35,2	0,0	35,2	1,8	63,3
							max	67,6		148,8
MD1	9,8	9,8	0,7	20,3	1,2	24,4	0,0	24,4	2,5	60,9
MD2	8,6	9,0	0,8	18,4	1,2	22,1	0,0	22,1	0,5	11,0
MD3	10,8	10,3	0,7	21,8	1,2	26,2	0,0	26,2	2,2	57,6
MD4	15,0	10,6	1,7	27,3	1,2	32,8	24,0	56,8	3,2	181,6
MD5	8,6	9,0	0,8	18,4	1,2	22,1	0,0	22,1	0,5	11,0
MD6	13,9	10,4	1,8	26,1	1,2	31,3	0,0	31,3	2,0	62,6
							max	56,8		181,6

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 22 von 84

Für die BD Plattformen wird für die Analysen ein maximales aufgerundetes Plattformgesamtgewicht von m = 70 t mit einer Exzentrizität von 2,2 m betrachtet.

Für die MD Plattformen wird für die Analysen ein maximales aufgerundetes Plattformgesamtgewicht von m = 60 t mit einer Exzentrizität von 3,2 m betrachtet.

5.2.2 Plattformflächen

Eine Übersicht zu den Plattformhauptabmessungen, sowie den resultierenden Flächen wird in der folgenden Tabelle geliefert.

Tabelle 5-2: Plattformabmessungen und Flächen

Als richtig vorausgesetzt.

Plattform	Länge L [m]	Breite B [m]	max TS Höhe H [m]	Grundfläche A = L *B [m²]	Windfläche 1 A1 = L*H [m²]	Windfläche 2 A ₂ = B*H [m²]
BD 1	9,3	9,3	2,0	86,5	18,6	18,6
BD 2	9,1	8,3	2,0	75,5	18,2	16,6
BD 3	9,1	8,2	10,7	74,6	97,4	87,7
BD 4	13,4	8,2	2,0	109,9	26,8	16,4
			Max	109,9	97,4	87,7
MD 1	10,7	6,2	2,0	66,2	21,3	12,4
MD 2	8,9	6,2	2,0	55,2	17,8	12,4
MD 3	11,7	6,8	2,0	79,4	23,3	13,6
MD 4	12,2	10,1	5,9	123,4	72,1	59,6
MD 5	8,9	6,2	2,0	55,2	17,8	12,4
MD 6	10,4	7,7	2,0	79,9	20,8	15,4
			Max	123,4	72,1	59,6

Für die BD Plattformen wird für die Analysen eine maximale Grundfläche von 110 m² und eine maximale Windangriffsfläche von 97,4 m² berücksichtigt.

Für die MD Plattformen wird für die Analysen eine maximale Grundfläche von 124 m² und eine maximale Windangriffsfläche von 72,1 m² berücksichtigt.

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 23 von 84

5.3 Beschreibung der Dalben-Pfähle

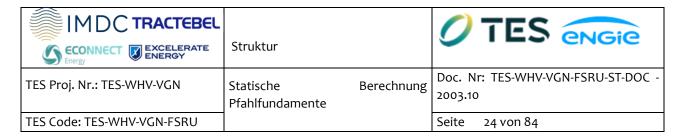
Alle Anlege- und Ankerdalben werden als Monopiles ausgeführt. Dabei sind die Hauptabmessungen für alle 10 Pfähle (6 x MDs und 4 x BDs) gleich.

Zum Untersuchungszeitpunkt unterscheiden sich alle Pfahllokationen leicht hinsichtlich der Wassertiefe. Es sei an dieser Stelle darauf hingewiesen, dass sich alle im folgenden benannten Einbindelängen und Wassertiefen auf den finalen, ausgebaggerten Bemessungszustand mit Kolkschutz beziehen.

Aufgrund der unterschiedlichen Wassertiefen unterscheiden sich die Pfähle für MDs und BDs nur in ihrer Bodeneinbindelänge:

Außendurchmesser: D_{Pfahl} = 4,50 m

Wandstärke: t_{Pfahl} = 60 mm (konstant)


Gesamtpfahllänge: L_{Pfahl}= 70,5 m

Einbindelänge in den Boden:
 Epfahl = 45,3 m für alle BD-Pfähle (bei OK Kolkschutzbei - 14,2 m SKN)
 Einbindelänge in den Boden:
 Epfahl = 48,3 m für alle MD-Pfähle (bei OK Kolkschutzbei - 11,2 m SKN)

Pfahlkopf (TOS): EL + 11,0 m SKN (für alle Dalben MDs und BDs)
 Pfahlfuß (TOS): EL - 59,5 m SKN (für alle Dalben MDs und BDs)

Die gerammten Pfähle werden wie in Abbildung 4-1 dargestellt angeordnet und werden, wie unten gezeigt, durch Brücken verbunden, um einerseits den Zugang zu erleichtern und andererseits einen Fluchtweg zu bieten.

Um alle Pfähle (MDs und BDs) wird ein ausreichender Kolkschutz eingebracht, sodass auf eine mögliche Kolkbildung in der Nachweisführung verzichtet werden kann.

ANLEGE-DALBENPFAHL (BD)

ANZAHL: 4

ANKER-DALBENPFAHL (MD)

ANZAHL: 6

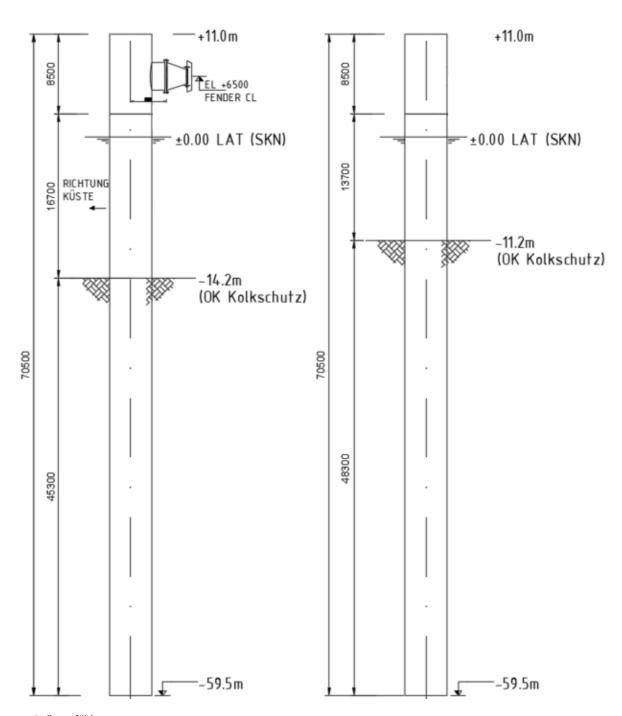


Abbildung 5-2: Dalbenpfähle

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 25 von 84

6 Bemessungsbodenprofile

6.1 Allgemeines

Die Bemessungsbodenprofile für alle 10 Dalbenpfähle sind dem "Geotechnischen Bericht" von ACP entnommen, siehe auch Ref. [3.].

Alle 10 Bemessungsprofile enthalten die wesentlichen Kennwerte immer 3-fach:

- Best Estimate (BE) / Mittelwerte
- Low Estimate (LE) / untere Grenzwerte
- High Estimate (HE) / obere Grenzwerte

Basierend auf Anforderungen aus Ref. [3.], werden BE-Bodendaten für die Ermittlung der Mantelreibung verwendet.

Gemäß Ref. [3.] empfiehlt ACP, für die ULS-Nachweisen die LE-Grenzwerte für die Spitzenwiderstände zu benutzten und für die SLS-Nachweise die BE-Mittelwerte.

Da die axiale äußerer Pfahltragfähigkeit in den hier zu untersuchenden allen 10 Dalbenpfählen nicht maßgebend wird, wird der Anteil der Spitzenwiderstände konservativ vereinfachend komplett vernachlässigt (dies hat keine Auswirkung auf die innere Tragfähigkeit der Pfähle).

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. No.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 26 von 84

6.2 Bemessungsprofil für BD1

Im Folgenden ist das Bemessungsprofil für BD1 dargestellt.

Ansatzpunkt:			FSRU- B	D 1																			
Rechnerische	Wassertiefe (DSL):		-14.20	[m SKN]		(Bemessungsbodenpr	ofil)																
					Ch	arakteristische Bo	denkenr	werte	(BE in "f	fett") u	nd Ban	dbreite	(LE - HE)									
Schicht Nr.	Tiefe unter Meeresboden	Höhe	Spitz	enwidersta	and	Bodenart	Bezogen	Bezogene Lagerungsdichte		Auftr	iebswich Bodens			Effektive bungswir		Effektive Kohäsion			Undränierte Kohäsion		Steifemod		dul
	Z			q _c		-		I _D			γ'			φ'			c'		Cu			E _s	
[-]	[m]	[m SKN]		[MPa]		[-]		[%]			[kN/m³]			[°]		[kl	N/m²]		[kN/m²	1		[MN/m²	1
1*	0.00	-14.20		-		Steinschüttung		-			9.0			37.5			0		0			10	
	1.40	-15.60				eingebettet	-	-	-	8.0	-	10.0	27.5	-	55.0	-	-	-		-	8	-	15
2	1.40	-15.60		8.0		Sand		36.0			8.0			32.5			0		0			4	
	1.96	-16.16	4.5	-	10.0	mitteldicht	25.0	-	38.0	7.0	-	8.5	30.5	-	35.2	-	-	-		-	1	-	8
3	1.96	-16.16		15.0		Sand		50.4			8.5			35.5			0		0			16	
	7.36	-21.56	12.0	-	19.0	mitteldicht	32.0	-	54.0	7.0	-	9.0	32.2	-	38.9	-	-	-		-	9	-	23
4	7.36	-21.56		19.0		Sand		66.0			9.5			37.0			0		0			28	
	11.36	-25.56	12.0	-	26.0	dicht	46.0	-	78.0	8.5	-	10.0	36.0	-	40.6	-	-	-		-	22	-	34
5	11.36	-25.56		30.0		Sand		98.0			11.5			42.0			0		0			40	
	16.36	-30.56	26.0	-	37.0	sehr dicht	95.0	-	105.0	11.0	-	12.5	39.8	-	46.8	-	-	-		-	34	-	44
6	16.36	-30.56		23.0		Sand		77.0			11.5			39.0			0		0			49	
	27.36	-41.56	18.0	-	28.0	dicht	66.0	-	91.0	10.5	-	12.5	36.2	-	43.0	-	-	-		-	44	-	58
7	27.36	-41.56		23.0		Sand		69.0			12.5			37.0			0		0			64	
	39.36	-53.56	21.0	-	29.0	dicht	64.0	-	75.0	12.0	-	13.0	35.4	-	37.6	-	-	-		-	58	-	72
8	39.36	-53.56		30.0		Sand		75.0			12.5			37.5			0		0			77	
	43.46	-57.66	24.0	-	40.0	dicht	66.0	-	85.0	12.0	-	13.5	35.8	-	39.2	-	-	-		-	72	-	83
9**	43.46	-57.66				Sand					10.0			32.5			0		0			40	
	65.00	-79.20				mitteldicht																	
*Kolkschutzsch	üttung im Bereich Anleg	edalben BD (Stein	schüttung 50	0-200mm ei	ngebettet	in Seeboden)																	
**Keine CPT-Da	aten verfügbar. Bodenpa	rameter konserva	ativ angenon	nmen gemä	ß Bohr-Da	ten.																	

Abbildung 6-1: Bemessungsprofil BD1, gemäß Ref. [3.]

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 27 von 84

6.3 Bemessungsprofil für BD2

Im Folgenden ist das Bemessungsprofil für BD2 dargestellt.

Ansatzpunkt:			FSRU- E	3D 2																			
Rechnerische	Wassertiefe (DSL):		-14.20	[m SKN]		(Bemessungsbodenpr	ofil)																
					Ch	arakteristische Boo	denkenr	werte	(BE in "f	ett") u	nd Ban	dbreite	(LE - HE)									
Schicht Nr.	Tiefe unter Meeresboden	Höhe	Spita	zenwidersta	and	Bodenart	Bezogen	e Lagerun	gsdichte	Auftri	ebswich Bodens			Effektive bungswir			ektive näsion		Undränie Kohäsio		St	teifemod	lul
	z			q _c		-		I _D			γ'			φ'			c'		c _u			E _s	
[-]	[m]	[m SKN]		[MPa]		[-]		[%]			[kN/m³]			[°]		[kt	V/m²]		[kN/m²]			[MN/m²]
1*	0.00	-14.20		-		Steinschüttung		-			9.0			37.5			0		0			10	
	1.40	-15.60				eingebettet	-	-	-	8.0	-	10.0	27.5	-	55.0	-	-	-		-	8	-	15
2	1.40	-15.60		12.0		Sand		36.0			9.0			32.5			0		0			14	
	7.30	-21.50	4.7	-	16.0	mitteldicht	25.0	-	38.0	7.0	-	9.5	30.5	-	35.2	-	-	-		-	5	-	22
3	7.30	-21.50		14.0		Sand		48.7			10.0			35.0			0		0			29	
	18.80	-33.00	12.0	-	17.0	mitteldicht	44.0	-	53.0	9.0	-	10.5	33.6	-	43.0	-	-	-		-	23	-	39
4	18.80	-33.00		20.0		Sand		75.0			11.5			38.3			0		0			45	
	26.40	-40.60	17.0	-	26.0	dicht	70.0	-	83.0	10.5	-	12.0	37.2	-	40.1	-	-	-		-	40	-	53
5	26.40	-40.60		19.0		Sand		67.0			11.5			36.5			0		0			52	
	29.82	-44.02	17.0	-	22.0	dicht	63.0	-	73.0	11.0	-	12.0	35.6	-	37.7	-	-	-		-	50	-	54
6	29.82	-44.02		24.0		Sand		72.0			12.5			37.2			0		0			62	
	39.10	-53.30	22.0	-	27.0	dicht	68.0	-	77.0	12.0	-	13.0	36.2	-	38.3	-	-	-		-	58	-	67
7	39.10	-53.30		33.0		Sand		85.0			12.5			39.0			0		0			75	
	44.08	-58.28	25.0	-	48.0	sehr dicht	71.0	-	95.0	11.5	-	13.5	36.6	-	41.1	-	-	-		-	68	-	81
8**	44.08	-58.28		-		Sand		-			10.0			32.5			0		0			40	
	65.00	-79.20				mitteldicht																	
*Kolkschutzsch	üttung im Bereich Anlege	edalben BD (Stein	schüttung 5	0-200mm ei	ngebettet	in Seeboden)																	
**Keine CPT-D	aten verfügbar. Bodenpa	rameter konserva	ativ angeno	mmen gemä	ß Bohr-Da	ten.																	

Abbildung 6-2: Bemessungsprofil BD2, gemäß Ref. [3.]

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 28 von 84

6.4 Bemessungsprofil für BD3

Im Folgenden ist das Bemessungsprofil für BD3 dargestellt.

Ansatzpunkt:			FSRU- B	D 3																		
Rechnerische	Wassertiefe (DSL):		-14.20	[m SKN]		(Bemessungsbodenpr	ofil)															
					Ch	arakteristische Boo	lenkenr	werte	(BE in "	fett") u	nd Ban	dbreite	(LE - HE)								
Schicht Nr.	Tiefe unter Meeresboden	Höhe	Spitz	enwidersta	and	Bodenart	Bezogen	e Lagerun	gsdichte	Auftr	iebswich Bodens			Effektive bungswir			ktive äsion		dränierte ohäsion	5	teifemo	dul
	z			q _c		-		I _D			γ'			φ'			c'		Cu		E _s	
[-]	[m]	[m SKN]		[MPa]		[-]		[%]			[kN/m³]			[°]		[kN	l/m²]	[kN/m²]		[MN/m	²]
1*	0.00	-14.20		-		Steinschüttung		-			9.0			37.5			0]	0		10	
	1.40	-15.60				eingebettet	-	-	-	8.0	-	10.0	27.5	-	55.0	-		-		8	-	15
2	1.40	-15.60		16.0		Sand		36.0			9.0			32.5			0		0		12	!
	4.22	-18.42	11.0	-	17.0	mitteldicht	25.0	-	38.0	7.0	-	9.5	30.5	-	35.2	-		-		9	-	15
3	4.22	-18.42		18.0		Sand		55.4			10.0			35.0			0		0		22	
	9.52	-23.72	8.0	-	21.0	mitteldicht	44.0	-	57.4	9.0	-	10.5	33.6	-	43.0	-		-		13	-	28
4	9.52	-23.72		21.0		Sand		75.0			11.0			38.0			0		0		36	
	17.82	-32.02	19.0	-	24.0	dicht	70.0	-	83.0	10.5	-	12.0	37.2	-	40.1	-		-		29	-	42
5	17.82	-32.02		25.0		Sand		85.0			12.0			40.0			0		0		49	
	24.02	-38.22	21.0	-	28.0	sehr dicht	74.0	-	90.0	11.5	-	12.1	37.7	-	42.7	-		-		44	-	53
6	24.02	-38.22		20.0		Sand		69.0			12.0			36.7			0		0		55	
	30.24	-44.44	14.0	-	22.0	dicht	55.0	-	72.0	10.5	-	12.1	33.9	-	37.5	-		-		50	-	58
7	30.24	-44.44		28.0		Sand		75.0			12.5			37.6			0		0		68	
	40.98	-55.18	23.0	-	37.0	dicht	68.0	-	83.0	12.0	-	13.0	36.2	-	39.2	-		-		61	-	78
8**	40.98	-55.18		<u> </u>		Sand					10.0			32.5			0		0		40	
	65.00	-79.20				mitteldicht																
*Kolkschutzsch	üttung im Bereich Anlege	edalben BD (Stein	schüttung 50	0-200mm ei	ngebettet	in Seeboden)																
**Keine CPT-Da	ten verfügbar. Bodenpa	rameter konserva	ativ angenon	nmen gemä	ß Bohr-Da	ten.																

Abbildung 6-3: Bemessungsprofil BD3, gemäß Ref. [3.]

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 29 von 84

6.5 Bemessungsprofil für BD4

Im Folgenden ist das Bemessungsprofil für BD4 dargestellt.

Ansatzpunkt:			FSRU- B	D 4																			
Rechnerische	Wassertiefe (DSL):		-14.20	[m SKN]		(Bemessungsbodenpr	ofil)																
					Ch	arakteristische Boo	denkenr	werte	(BE in "1	fett") u	nd Ban	dbreite	(LE - HE)									
Schicht Nr.	Tiefe unter Meeresboden	Höhe	Spitz	enwidersta	and	Bodenart	Bezogen	e Lagerun	gsdichte	Auftr	iebswich Bodens			Effektive bungswir			fektiv ohäsio	_	Undrä Koh		s	teifemo	dul
	Z			q _c		-		I _D			γ'			φ'			c'		C	u		E _s	
[-]	[m]	[m SKN]		[MPa]		[-]		[%]			[kN/m³]	l		[°]		[]	kN/m²]	[kN	/m²]		[MN/m ²	1
1*	0.00	-14.20		-		Steinschüttung		-			9.0			37.5			0		0			10	
	1.40	-15.60				eingebettet	-	-	-	8.0	-	10.0	27.5	-	55.0	-	-	-		-	8	-	15
2	1.40	-15.60		17.0		Sand		54.0			8.5			34.0			0		0			8	
	4.36	-18.56	12.0	-	22.0	mitteldicht	49.0	-	58.0	6.5	-	8.8	30.0	-	36.0	-	-	-		-	0	-	14
3	4.36	-18.56		24.0		Sand		65.5			9.5			37.1			0		0			21	
	8.76	-22.96	23.0	-	26.0	dicht	59.0	-	68.5	7.0	-	10.0	34.0	-	39.0	-	-	-		-	16	-	26
4	8.76	-22.96		31.0		Sand		77.3			10.5			39.5			0		0			36	
	17.56	-31.76	23.0	-	34.0	sehr dicht	72.0	-	82.0	9.5	-	11.0	37.7	-	43.0	-	-	-		-	26	-	43
5	17.56	-31.76		25.0		Sand		79.0			11.5			38.8			0		0			50	
	29.56	-43.76	23.0	-	26.0	sehr dicht	76.0	-	90.0	11.0	-	12.5	38.2	-	42.8	-	-	-		-	44	-	58
6	29.56	-43.76		34.0		Sand		87.0			12.0			40.0			0		0			66	
	33.56	-47.76	29.0	-	42.0	sehr dicht	81.0	-	96.0	11.5	-	13.5	39.1	-	42.3	-	-	-		-	60	-	72
7	33.56	-47.76		30.0		Sand		79.0			12.0			38.2			0		0			69	
	40.56	-54.76	24.0	-	35.0	sehr dicht	68.0	-	84.0	11.5	-	13.5	36.1	-	39.2	-	-	-		-	65	-	75
8	40.56	-54.76		36.0		Sand		83.0			12.0			39.0			0		0			78	
	42.86	-57.06	32.0	-	43.0	sehr locker	77.0	-	90.0	11.5	-	13.5	37.9	-	40.2	-	-	-		-	74	-	80
9**	42.86	-57.06				Sand					10.0			32.5			0		0			40	
	65.00	-79.20				mitteldicht																	
*Kolkschutzsch	üttung im Bereich Anleg	edalben BD (Stein	schüttung 5	0-200mm ei	ngebettet	in Seeboden)																	
**Keine CPT-Da	aten verfügbar. Bodenpa	rameter konserva	ativ angenon	mmen gemä	ß Bohr-Da	ten.																	

Abbildung 6-4: Bemessungsprofil BD4, gemäß Ref. [3.]

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 30 von 84

6.6 Bemessungsprofil für MD1

Im Folgenden ist das Bemessungsprofil für MD1 dargestellt.

Ansatzpunkt:			FSRU- N	MD 1																				
Rechnerische	Wassertiefe (DSL):		-11.20	[m SKN]		(Bemessungsbodenpr	ofil)																	
					Ch	arakteristische Bo	denkenr	werte	(BE in "f	fett") u	nd Ban	dbreite	(LE - HE)										
Schicht Nr.	Tiefe unter Meeresboden	Höhe	Spit	zenwiderst	and	Bodenart	Bezogen	e Lagerur	ngsdichte	Auftr	iebswich Bodens			Effektive bungswir			ffektiv ohäsio			dränie Ohäsio		S	teifemod	ful
	Z			q _c		-		I _D			γ'			φ'			c'			cu			E _s	
[-]	[m]	[m SKN]		[MPa]		[-]		[%]			[kN/m³]			[°]		[kN/m²]	-	[kN/m²]]		[MN/m²]	
1*	0.00	-11.20		-		Steinschüttung		-			0.0			0.0			0			0			0	
	0.90	-12.10				aufbauend	-	-	-	0.0	-	10.0	0.0	-	55.0	-	-	-	-	-	-	0	-	0
2**	0.90	-12.10		-		Sand/Schluff		-			7.5			27.5			3			40			2	
	1.85	-13.05				locker	-	-	-	6.5	-	8.5	25.0	-	30.0	1	-	5	20	-	60	1	-	4
3	1.85	-13.05		13.0		Sand		47.0			8.5			34.0			0			0			7	
	4.75	-15.95	8.0	-	14.0	mitteldicht	44.0	-	53.0	6.5	-	8.8	30.0	-	36.0	-	-	-	-	-	-	4	-	12
4	4.75	-15.95		21.0		Sand		61.0			9.5			37.1			0			0			18	
	7.75	-18.95	16.0	-	26.0	dicht	59.0	-	63.8	7.0	-	10.0	34.0	-	39.0	-	-	-	-	-	-	14	-	22
5	7.75	-18.95		33.0		Sand		80.4			10.5			40.0			0			0			31	
	13.75	-24.95	21.0	-	38.0	sehr dicht	72.0	-	82.0	9.5	-	11.0	37.7	-	43.0	-	-	-	-	-	-	23	-	36
6	13.75	-24.95		39.0		Sand		90.0			11.5			42.0			0			0			47	
	22.75	-33.95	33.0	-	44.0	sehr dicht	86.0	-	94.0	11.0	-	12.5	38.2	-	42.8	-	-	-	-	-	-	40	-	56
7	22.75	-33.95		30.0		Sand		86.0			12.0			40.2			0			0			57	
	28.75	-39.95	28.0	-	40.0	sehr dicht	82.0	-	97.0	11.5	-	13.0	39.4	-	42.4	-	-	-	-	-	-	56	-	65
8	28.75	-39.95]	43.0		Sand		96.0			12.5			42.3			0			0			70	
	33.75	-44.95	41.0	-	58.0	sehr dicht	93.0	-	105.0	12.0	-	14.0	41.7	-	43.0	-	-	-	-	-	-	66	-	77
9	33.75	-44.95		37.0		Sand		85.0			12.0			39.2			0			0			78	
	46.97	-58.17	30.0	-	51.0	sehr dicht	73.0	-	95.0	11.5	-	14.0	37.1	-	41.3	-	-	-	-	-	-	72	-	91
10***	46.97	-58.17				Sand					10.0			32. 5			0			0			40	
	65.00	-76.20				mitteldicht																		
*Kolkschutzsch	üttung im Bereich Anker	dalben MD (Stein	schüttung 5	50-200mm a	ufbauend a	auf Seeboden)																		

^{**}Keine CPT-Daten verfügbar. Bodenparameter konservativ angenommen gemäß Interpolation benachbarter CPT-Daten.

^{**}Keine CPT-Daten verfügbar. Bodenparameter konservativ angenommen gemäß Bohr-Daten.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 31 von 84

6.7 Bemessungsprofil für MD2

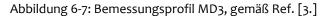
Im Folgenden ist das Bemessungsprofil für MD2 dargestellt.

Ansatzpunkt:			FSRU- N	1D 2																				
Rechnerische	Wassertiefe (DSL):		-11.20	[m SKN]		(Bemessungsbodenpi	rofil)																	
					Ch	arakteristische Bo	denkeni	nwerte	(BE in "	fett") u	nd Ban	dbreite	(LE - HE)										
Schicht Nr.	Tiefe unter Meeresboden	Höhe	Spitz	enwiderst	and	Bodenart	Bezogen	ie Lagerui	ngsdichte	Auftr	iebswich Bodens			Effektive bungswir			ffektiv ohäsio			dränie ohäsio		Si	teifemo	dul
	Z			q _c		-		I _D			γ'			φ'			c'			Cu			E _s	
[-]	[m]	[m SKN]		[MPa]		[-]		[%]			[kN/m³]			[°]		[kN/m²]		kN/m²]		[MN/m²	1
1*	0.00	-11.20		-		Steinschüttung		-			0.0			0.0			0			0			0	
	0.78	-11.98				aufbauend	-	-	-	0.0	-	10.0	0.0	-	55.0	-	-	-	-	-	-	0	-	0
2**	0.78	-11.98		-		Steinschüttung		-			9.0			37.5			0			0			10	
	0.90	-12.10				eingebettet	-	-	-	8.0	-	10.0	27.5	-	55.0	-	-	-	-	-	-	8	-	15
3***	0.90	-12.10		-		Sand/Schluff		-			7.5			27.5			3			40			2	
	2.01	-13.21				locker	-	-	-	6.5	-	8.5	25.0	-	30.0	1	-	5	20	-	60	1	-	4
4	2.01	-13.21		1.4		Sand/Schluff		-			7.5			27.5			3			40			2	
	3.01	-14.21	0.9	-	7.0	locker	-	-	-	6.5	-	8.5	25.0	-	30.0	1	-	5	20	-	60	1	-	4
5	3.01	-14.21		12.0		Sand		45.4			9.5			32.0			0			0			9	
	6.21	-17.41	8.0	-	14.0	mitteldicht	41.0	-	52.0	7.0	-	10.0	31.0	-	37.0	-	-	-	-	-	-	3	-	13
6	6.21	-17.41		19.0		Sand		57.1			10.5			35.0			0			0			20	
	11.01	-22.21	17.0	-	23.0	dicht	53.4	-	64.2	9.5	-	11.0	32.3	-	38.0	-	-	-	-	-	-	16	-	25
7	11.01	-22.21		32.0		Sand		79.0			11.5			40.0			0			0			36	
	19.21	-30.41	28.0	-	35.0	sehr dicht	74.0	-	82.0	11.0	-	12.5	38.2	-	42.8	-	-	-	-	-	-	30	-	43
8	19.21	-30.41		28.0		Sand		87.0			12.0			40.4			0			0			52	
	33.21	-44.41	26.0	-	33.0	sehr dicht	80.0	-	93.0	11.0	-	12.5	39.1	-	43.3	-	-	-	-	-	-	43	-	61
9	33.21	-44.41		35.0		Sand		88.0			12.0			40.6			0			0			66	
	35.71	-46.91	20.0	-	53.0	sehr dicht	58.0	-	104.0	11.5	-	13.5	34.7	-	43.8	-	-	-	-	-	-	47		72
10	35.71	-46.91		30.0		Sand		78.0			12.0			38.2			0			0			73	
	45.05	-56.25	27.0	-	40.0	sehr dicht	72.0	-	88.0	11.8	-	13.5	37.0	-	39.9	-	-	-	-	-	-	65	-	78
11****	45.05	-56.25				Sand					10.0			32.5			0			0			40	
	65.00	-76.20				mitteldicht																Щ_		
*Kolkschutzsch	üttung im Bereich Anker	dalben MD (Stein	schüttung 50	0-200mm a	ufbauend a	auf Seeboden)																		
** Bodenparam	neter der eingebetteten	Kolkschutzschicht	konservativ	angenomn	nen.																			
***Keine CPT-D	aten verfügbar. Bodenp	arameter konser	vativ angeno	mmen gem	äß Interpo	olation benachbarter CPT	-Daten (ge	emäß Schi	icht 4).															
***Keine CPT-	Daten verfügbar. Boden	parameter konse	rvativ angen	ommen ger	näß Bohr-	Daten.																		

Abbildung 6-6: Bemessungsprofil MD2, gemäß Ref. [3.]

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 32 von 84

Bemessungsprofil für MD3


Im Folgenden ist das Bemessungsprofil für MD3 dargestellt.

Ansatzpunkt:			FSRU- N	/ID 3																			
technerische	Wassertiefe (DSL):		-11.20	[m SKN]	(Bemess	ungsbodenprofil)																	
					Ch	arakteristische Bo	denkeni	nwerte	(BE in "f	fett") u	nd Ban	dbreite	(LE - HE	()									
Schicht Nr.	Tiefe unter Meeresboden	Höhe	Spitz	enwiderst	and	Bodenart	Bezogen	e Lagerur	ngsdichte	Auftr	iebswich Bodens			Effektive bungswir			ffektiv ohäsio		Undräi Kohä		s	teifemo	odul
	2			qc		-		ID			γ'			φ'			c'		C _L			E _s	
[-]	[m]	[m SKN]		[MPa]		[-]		[%]			[kN/m³]			[°]		[kN/m²]	[kN/	n²]		[MN/m	2]
1*	0.00	-11.20		-		Steinschüttung		-			0.0			0.0			0		0			0	
	0.77	-11.97	1			aufbauend	-	-	-	0.0	-	10.0	0.0	-	55.0	-	-	-		-	0	-	0
2**	0.77	-11.97		-		Steinschüttung		-			9.0			37.5			0		0			10	
	0.90	-12.10	1			eingebettet	-	-	-	8.0	-	10.0	27.5	-	55.0	-	-	-		-	8	-	15
3***	0.90	-12.10		-		Sand/Schluff		-			7.5			27.5			3		40			2	
	2.05	-13.25	1			locker	-	-	-	6.5	_	8.5	25.0	-	30.0	1	-	5	20 -	60	1	-	4
4	2.05	-13.25		4.5		Sand/Schluff		33.0			7.5			27.5			3		40			2	
	3.81	-15.01	1.4	-	10.0	locker	31.0	-	35.0	6.5	-	8.5	25.0	-	30.0	1	-	5	20 -	60	1	-	4
5	3.81	-15.01		10.0		Sand		45.4			9.5			32.0			0		0			14	
	8.81	-20.01	6.0	-	15.0	mitteldicht	41.0	-	52.0	7.0	-	10.0	31.0	-	37.0	-	-	-		-	9	-	19
6	8.81	-20.01		24.0		Sand		65.5			10.5			37.1			0		0			31	
	17.81	-29.01	17.0	-	31.0	dicht	53.4	-	67.3	9.5	-	11.0	32.3	-	38.0	-	-	-		-	22	-	40
7	17.81	-29.01		24.0		Sand		65.5			11.5			37.1			0		0			43	
	24.21	-35.41	22.0	-	29.0	dicht	64.2	-	82.0	11.0	-	12.5	36.9	-	42.8	-	-	-		-	41	-	48
8	24.21	-35.41		28.0		Sand		80			12.0			39.1			0		0			57	
	36.31	-47.51	19.0	-	31.0	sehr dicht	71	-	87	11.0	-	12.5	37.2	-	40.5	-	-	-		-	46	-	66
9	36.31	-47.51		30.0		Sand		77			12.5			37.9			0		0			72	
	44.81	-56.01	23.0	-	36.0	sehr dicht	68	-	85	11.5	-	13.0	36.2	-	39.4	-	-	-		-	65	-	75
10	44.81	-56.01		40.0		Sand		86			12.5			39.5			0		0			80	
	46.95	-58.15	33.0	-	47.0	sehr dicht	78	-	92	11.5	-	13.5	38.0	-	40.7	-	-	-		-	77	-	83
11****	46.95	-58.15				Sand					10.0			32.5			0		0			40	
	65.00	-76.20]			mitteldicht																	

^{*} Bodenparameter der eingebetteten Kolkschutzschicht konservativ angenommen.

^{****}Keine CPT-Daten verfügbar. Bodenparameter konservativ angenommen gemäß Bohr-Daten.

^{***}Keine CPT-Daten verfügbar. Bodenparameter konservativ angenommen gemäß Interpolation benachbarter CPT-Daten (gemäß Schicht 4).

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 33 von 84

6.9 Bemessungsprofil für MD4

Im Folgenden ist das Bemessungsprofil für MD4 dargestellt.

Ansatzpunkt:			FSRU- N	1D 4																				
Rechnerische	Wassertiefe (DSL):		-11.20	[m SKN]		(Bemessungsbodenpr	ofil)																	
					Ch	arakteristische Boo	denkeni	nwerte ((BE in "i	fett") u	nd Ban	dbreite	(LE - HE)										
Schicht Nr.	Tiefe unter Meeresboden	Höhe	Spitze	enwidersta	and	Bodenart	Bezogen	e Lagerun	gsdichte	Auftr	iebswich Bodens			Effektive bungswin			fektiv ohäsio			dränier ohäsior		St	teifemod	lul
	z			q _c		-		ID			γ'			φ'			c'			cu			Es	
[-]	[m]	[m SKN]		[MPa]		[-]		[%]			[kN/m³]			[°]		[kN/m²]	[kN/m²]			[MN/m²]	1
1*	0.00	-11.20		-		Steinschüttung		-			0.0			0.0			0			0			0	
	0.08	-11.28				aufbauend	-	-	-	0.0	-	10.0	0.0	-	55.0	-	-	-	-	-	-	0	-	0
2**	0.08	-11.28		-		Steinschüttung		-			9.0			37.5			0			0			10	
	0.82	-12.10				eingebettet	-	-	-	8.0	-	10.0	27.5	-	55.0	-	-	-	-	-	-	8	-	15
3***	0.82	-12.10		-		Sand/Schluff		-			7.5			27.5			3			40			2	
	2.23	-13.43				locker	-	-	-	6.5	-	8.5	25.0	-	30.0	1	-	5	20	-	60	1	-	4
4	2.23	-13.43		1.8		Sand/Schluff		-			7.5			27.5			3			40			2	
	5.18	-16.38	0.2	-	4.5	locker	-	-	-	6.5	-	8.5	25.0	-	30.0	1	-	5	20	-	60	1	-	4
5	5.18	-16.38		20.0		Sand		58.8			8.5			35.4			0			0			19	
	12.08	-23.28	12.0	-	22.0	mitteldicht	51.2	-	61.3	7.0	-	10.0	31.0	-	37.0	-	-	-	-	-	-	10	-	26
6	12.08	-23.28		18.0		Sand		55.4			9.5			34.6			0			0			31	
	18.60	-29.80	16.0	-	20.0	mitteldicht	53.4	-	64.2	9.0	-	11.0	32.3	-	38.0	-	-	-	-	-	-	27	-	35
7	18.60	-29.80		23.0		Sand		83.0			10.5			38.0			0			0			44	
	26.58	-37.78	20.0	-	25.0	dicht	77.0	-	86.0	10.0	-	11.0	37.4	-	42.0	-	-	-	-	-	-	38	-	49
8	26.58	-37.78		16.0		Sand		63.0			10.5			35.0			0			0			47	
	29.38	-40.58	14.0	-	19.0	mitteldicht	56	-	71	9.5	-	11.0	34.2	-	37.1	-	-	-	-	-	-	46	-	48
9	29.38	-40.58		26.0		Sand		78.0			11.5			38.4			0			0			60	
	39.98	-51.18	22.0	-	34.0	dicht	73	-	85	11.0	-	12.0	37.6	-	39.9	-	-	-	-	-	-	53	-	69
10	39.98	-51.18		33.0		Sand		81.0			11.5			38.6			0			0			72	
	45.02	-56.22	24.0	-	47.0	dicht	69	-	95	11.0	-	12.0	36.2	-	41.1	-	-	-	-	-	-	67	-	79
11****	45.02	-56.22				Sand					10.0			32.5			0			0			40	
	65.00	-76.20				mitteldicht																		
*Kolkschutzsch	üttung im Bereich Anker	dalben MD (Stein	schüttung 50	0-200mm a	ufbauend a	auf Seeboden)																		
** Bodenparan	neter der eingebetteten I	Kolkschutzschicht	konservativ	angenomm	nen.																			
***Keine CPT-E	Daten verfügbar. Bodenp	arameter konsen	vativ angeno	mmen gem	äß Interpo	lation benachbarter CPT	-Daten (ge	emäß Schi	cht 4).															

Abbildung 6-8: Bemessungsprofil MD4, gemäß Ref. [3.]

****Keine CPT-Daten verfügbar. Bodenparameter konservativ angenommen gemäß Bohr-Daten.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 34 von 84

6.10 Bemessungsprofil für MD5

Im Folgenden ist das Bemessungsprofil für MD5 dargestellt.

Ansatzpunkt:			FSRU- N	1D 5																				
Rechnerische '	Wassertiefe (DSL):		-11.20	[m SKN]	(Bemess	ungsbodenprofil)																		
					Ch	arakteristische Bo	denkenr	werte	(BE in "f	fett") u	nd Ban	dbreite	(LE - HE	:)										
Schicht Nr.	Tiefe unter Meeresboden	Höhe	Spitze	enwiderst	and	Bodenart	Bezogen	e Lagerur	ngsdichte	Auftr	iebswich Bodens			Effektive bungswir		_	ffektiv ohäsio			ndränier Kohäsior		St	eifemod	ful
	z			q _c		-		I _D			γ'			φ'			c'			Cu			Es	
[-]	[m]	[m SKN]		[MPa]		[-]		[%]			[kN/m³]	l		[°]		ı	kN/m²	·]		[kN/m²]			[MN/m²]	
1*	0.00	-11.20		-		Steinschüttung		-			9.0			37.5			0			0			10	
	0.90	-12.10				eingebettet	-	-	-	8.0	-	10.0	27.5	-	55.0	-	-	-	-	-	-	8	-	15
2	0.90	-12.10		2.6		Sand/Schluff		30.0			7.5			27.5			3			40			2	
	4.77	-15.97	0.0	-	13.0	locker	28.0	-	31.0	6.5	-	8.5	25.0	-	30.0	1	-	5	20	-	60	1	-	4
3	4.77	-15.97		18.0		Sand		55.4			8.5			35.0			0			0			20	
	9.77	-20.97	10.0	-	19.0	mitteldicht	41.0	-	57.2	7.0	-	10.0	31.0	-	37.0	-	-	-	-	-	-	12	-	24
4	9.77	-20.97		24.0		Sand		65.5			10.0			37.1			0			0			35	
	19.77	-30.97	20.0	-	32.0	dicht	53.4	-	66.2	9.5	-	11.0	32.3	-	38.0	-	-	-	-	-	-	27	-	46
5	19.77	-30.97		22.0		Sand		77.0			11.0			38.7			0			0			48	
	27.77	-38.97	18.0	-	31.0	dicht	72.0	-	90.0	10.5	-	11.5	37.5	-	41.4	-	-	-	-	-	-	43	-	53
6	27.77	-38.97		26.0		Sand		76.0			12.0			38.3			0			0			60	
	34.77	-45.97	22.0	-	33.0	dicht	73.0	-	87.0	11.5	-	12.5	37.7	-	40.3	-	-	-	-	-	-	55	-	66
7	34.77	-45.97		29.0		Sand		77.0			12.0			37.7			0			0			71	
	42.37	-53.57	25.0	-	38.0	dicht	71.0	-	88.0	11.5	-	13.0	36.6	-	39.9	-	-	-	-	-	-	66	-	74
8	42.37	-53.57		41.0		Sand		86.0			12.5			40.0			0			0			86	
	55.91	-67.11	0.0	-	60.0	sehr dicht	81.0	-	100.0	10.0	-	13.5	23.4	-	42.1	-	-	-	-	-	-	6	-	95
9**	55.91	-67.11				Sand					10.0			32.5			0			0			40	
	65.00	-76.20				mitteldicht																		
*Kolkschutzschi	üttung im Bereich Anker	dalben MD (Stein	schüttung 50)-200mm e	ingebettet	in Seeboden)																		
**Keine CPT-Da	aten verfügbar. Bodenpa	rameter konserva	ativ angenon	nmen gemä	ß Bohr-Da	ten.																		

Abbildung 6-9: Bemessungsprofil MD5, gemäß Ref. [3.]

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 35 von 84

6.11 Bemessungsprofil für MD6

Im Folgenden ist das Bemessungsprofil für MD6 dargestellt.

Ansatzpunkt:			FSRU- N	1D 6																				
Rechnerische Wassertiefe (DSL): -11,20 [m SKN] (Bemessungsbodenprofil)																								
Charakteristische Bodenkennwerte (BE in "fett") und Bandbreite (LE - HE)																								
Schicht Nr.	Tiefe unter Meeresboden	Höhe	Spitzenwiderstand			Bodenart	Bezogene Lagerungsdichte			Auftriebswichte des Bodens			Effektiver Reibungswinkel			Effektive Kohäsion			Undränierte Kohäsion			Steifemodul		
	z		q _c -		-	I _D			Y'			φ'			c'			C _u			E _s			
[-]	[m]	[m SKN]		[MPa]		[-]	[%]			[kN/m³]			[*]			[kN/m²]			[kN/m²]			[MN/m²]		
1*	0.00	-11.20		-		Steinschüttung		-			0.0			0.0			0			0			0	
	0.20	-11.40				aufbauend	-	-	-	0.0	-	10.0	0.0	-	55.0	-	-	-	-	-	-	0	-	0
2**	0.20	-11.40		-		Steinschüttung		-			9.0			37.5			0			0			10	
	0.90	-12.10	1			eingebettet	-	-	-	8.0	-	10.0	27.5	-	55.0	-	-	-	-	-	-	8	-	15
3***	0.90	-12.10		-		Sand/Schluff		-			7.5			27.5			3			40			2	
	1.93	-13.33				locker	-	-	-	6.5	-	8.5	25.0	-	30.0	1	-	5	20	-	60	1	-	4
4	0.90	-13.33		7.0		Sand/Schluff		30.0			7.5			27.5			3			40			6	
	5.33	-16.53	3.9	-	10.0	locker	28.0	-	31.0	6.5	-	8.5	25.0	-	30.0	1	-	5	20	-	60	0	-	11
5	5.33	-16.53		23.0		Sand		63.8			9.5			36.5			0			0			24	
	14.33	-25.53	10.0	-	30.0	mitteldicht	41.0	-	66.0	7.5	-	10.5	31.0	-	37.0	-	-	-	-	-	-	13	-	34
6	14.33	-25.53		31.0		Sand		77.3			11.5			39.5			0			0			48	
	31.33	-42.53	27.0	-	36.0	dicht	53.4	-	81.0	11.0	-	12.5	32.3	-	40.5	-	-	-	-	-	-	37	-	59
7	31.33	-42.53		20.0		Sand		66.0			10.5			36.3			0			0			56	
	34.13	-45.33	18.0	-	24.0	dicht	62.0	-	74.0	10.0	-	12.0	35.4	-	37.8	-	-	-	-	-	-	55	-	60
8	34.13	-45.33		30.0		Sand		79.0			11.5			38.5			0			0			67	
	40.83	-52.03	24.0	-	39.0	sehr dicht	73.0	-	91.0	11.0	-	13.5	37.5	-	41.2	-	-	-	-	-	-	60	-	73
9	40.83	-52.03		42.0		Sand		88.0			12.0			40.0			0			0			80	
	47.93	-59.13	35.0	-	50.0	sehr dicht	83.0	-	95.0	11.5	-	13.5	38.9	-	41.3	-	-	-	-	-	-	74	-	86
10****	47.93	-59.13				Sand					10.0			32.5			0			0			40	
	65.00	-76.20				mitteldicht																		
*Kolkschutzschüttung im Bereich Ankerdalben MD (Steinschüttung 50-200mm aufbauend auf Seeboden)																								
** Bodenparameter der eingebetteten Kolkschutzschicht konservativ angenommen.																								
***Keine CPT-I	Daten verfügbar. Bodenp	arameter konser	vativ angeno	mmen gen	iäß Interpo	lation benachbarter CPT	-Daten (ge	emäß Schi	cht 4).															
****Keine CPT	-Daten verfügbar. Boden	parameter konse	rvativ angen	ommen ge	mäß Bohr-l	Daten.																		

Abbildung 6-10: Bemessungsprofil MD6, gemäß Ref. [3.]

ECONNECT SEXCELERATE ENERGY			OTES engie
TES Proj. No.: TES-WHV-VGN	Statische	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC -
	Pfahlfundamente	_	2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 36 von 84

7 Nachweismethoden

7.1 Allgemeines zur Nachweisführung

Wie in Ref. [3.] empfohlen werden alle ULS und SLS-Nachweise pro Pfahl erbracht.

Es wird die geotechnische Kategorie GK 2 nach EC3 angenommen (mittlerer Schwierigkeitsgrad im Hinblick auf Zusammenwirken von Bauwerk und Baugrund).

Es werden Nachweise für die folgenden Grenzzustände erbracht:

- Grenzzustand der Tragfähigkeit (Ultimate Limit State ULS)
- Grenzzustand der Gebrauchstauglichkeit (Serviceability Limit State SLS)

Der Grenzzustand der Ermüdung (FLS) im eingebauten Zustand wird für die hier betrachten Pfähle als vernachlässigbar eingestuft. Diese Annahme wird ebenfalls im Braugrund- und Gründungsgutachten, seihe Ref. [3.], bestätigt.

Die Ermüdung infolge Rammen wurde nicht explizit aktualisiert, lag allerdings bisher in einer Größenordnung von ca. 20%.

Es werden hier nur permanente Lastsituationen (P) geprüft, die Nachweisformate für temporäre Lasten (P) und außergewöhnliche Lasten (A) finden keine Anwendung.

Alle geotechnischen Nachweise werden nach DIN 1054, Ref. [VII.] geführt.

Alle strukturellen Nachweise des Pfahls (Betriebszustand und Hebezustand) werden nach EC3 bzw. DIN EN 1993(siehe Referenz [IX.]) geführt.

Die Lastfaktoren und maßgebenden Lastfallkombinationen sind für die geotechnischen und strukturellen Nachweise identisch.

7.2 LRFD-Methode

Für alle Nachweise wird die "Load and Resistance Factor Design" (LRFD) -Methode angewandt. Es handelt sich um ein Bemessungsverfahren, bei dem das angestrebte Sicherheitsniveau der Komponente erreicht wird, indem Belastungs- und Widerstandsfaktoren auf die charakteristischen Werte der Basisvariablen angewendet werden. Die grundlegenden Kennwerte sind die Folgenden:

- Lasten, die auf die Struktur wirken (S)
- Material- und Strukturwiderstände (R)

Das Sicherheitsniveau eines Bauteils gilt als ausreichend, wenn die Bemessungslasteinwirkung (Sd) die Bemessungstragfähigkeit (Rd) nicht überschreitet:

$$S_d \leq R_d$$

7.3 Allgemeine Design-Last / Entwurfslast

Grundsätzlich ergibt sich die Design-Last (F_d), indem die charakteristische Last ($F_{k,i}$) mit einem Lastfaktor multipliziert wird ($\gamma_{F,i}$):

$$F_d = \sum_{i} \gamma_{F,i} \cdot F_{k,i}$$

Laut Ref. [I.], Ref. [VII.] und Ref. [VIII.] sind unterschiedliche Teilsicherheitsfaktoren mit den entsprechenden Lasten zu kombinieren.

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 37 von 84

Lastkombinationen einschließlich der Lastfaktoren und Lastkombinationswerte sind für verschiedene Lasteinwirkungen in Kapitel 7.4 und in Kapitel 7.5 dieses Dokuments angegeben.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 38 von 84

7.4 Allgemeine Lastfaktoren und Kombinationen im Grenzzustand der Tragfähigkeit (ULS)

Alle Lastfaktoren für die globalen ULS-Nachweise leiten sich aus DIN 1054, Ref. [VII.] (bzw. EC3) ab und sind im *) Folgenden beschrieben.

• Eigengewicht + veränderliche Lasten:

$$\gamma_{G,ULS} * G + \gamma_{Q,ULS} * Q1 + \gamma_{Q,ULS} * (\Sigma Q_i * \psi_{o,i})$$

Für dem Grenzzustand GZ1B "Grenzzustand der Tragfähigkeit" (ehemals STR und GEO2) werden die folgenden Lastfaktoren verwendet:

γ_{G,ULS} = 1,35 für ungünstige ständige Einwirkungen G

 $\gamma_{Q,ULS} = 1,50$ für ungünstige veränderliche Einwirkungen Q

Es sei an dieser Stelle darauf hingewiesen, dass hier konservativ auf die Lastverringerung mit dem Lastfaktoren und dem Kombinationsbeiwert $\psi_{0,i}$ ($\psi_{0,i}$ = 0,5 für Schnee S und Eis, $\psi_{0,i}$ = 0,6 für Wind W, $\psi_{0,i}$ = 0,7 für Verkehrslast V; bzw. $\psi_{0,i}$ = 0,8 für geotechnische Nachweise) verzichtet wird. Stattdessen wird für alle veränderlichen Einwirkungen ein einheitlicher konservativer Beiwert von $\psi_{0,i}$ = 1,00 verwendet.

Obwohl das Gesamtbauwerk der Jetty-Struktur eigentlich in Konsequenzklasse CC2 eingestuft wird, wird hier für die Berechnung der Plattformen, der Brücken und der Pfähle konservativ ein zusätzlicher Faktor von K_{Fl} = 1,1 nach TRAS (siehe Ref. 16) für Wind-, Schnee- und Eislasten berücksichtigt. Dieser soll als zusätzliche Sicherheit gegenüber Umweltbelastungen dienen.

7.5 Allgemeine Lastfaktoren und Kombinationen im Grenzzustand der Gebrauchstauglichkeit (SLS)

Für SLS nach DIN 1054, Ref. [VII.], gelten die folgenden Lastfaktoren:

• Eigengewicht + veränderliche Lasten: $\gamma_{,SLS} * G + \gamma_{G,SLS} * Q_1 + \gamma_Q * (\Sigma Q_i * \psi_{o,i})$

Für dem Grenzzustand GZ2 "Grenzzustand der Gebrauchstauglichkeit" (SLS) werden die folgenden Lastfaktoren verwendet:

 $\gamma_{G,SLS}$ = 1,00 für ständige Einwirkungen G

 $\gamma_{Q,SLS}$ = 1,00 für veränderliche Einwirkungen Q

Ebenso wie für den Grenzzustand der Tragfähigkeit (ULS) wird auch im Grenzzustand der Gebrauchstauglichkeit (SLS) konservativ kein Kombinationsbeiwert $\psi_{o,i}$ benutzt. Ebenfalls wird hier zusätzlich ein Faktor von K_{FI} = 1,1 nach TRAS (siehe Ref, 16) berücksichtigt.

*) ungünstige Teilsicherheitsbeiwerte gemäß DIN 1054 gewählt

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 39 von 84

7.6 Zusätzliche Lastfaktoren für den Hebevorgang

Die Dalben werden einzeln (ohne Plattform und Haken oder sonstige Ausrüstung) angehoben und aufgerichtet.

Es wird ein Hebevorgang mit einem Haken und 2 Seilen angenommen. Der minimale Winkel zwischen der Horizontalen und den Seilen wird zu 60° angenommen.

Für den Nachweis der Struktur beim Heben werden zusätzliche Faktoren angesetzt. Die Lastfaktoren werden nach Ref. 16 bestimmt und auf die Designlast angewandt. Zusätzlich wird eine Gewichtsaufschlag f_m von 10% betrachtet.

Tabelle 7-1: Hebe-Faktoren

Faktor	Wert [-]	
Dynamischer Verstärkungs-Faktor (Dynamic Amplification Factor)	f _{DAF}	1+0,25*(100/SHL) ^{0,5} = 1,12 mit SHL = 463t
Gewichtsungenauigkeits-Faktor	f _m	1,10
Schwerpunkt (COG) Ungenauigkeits-Faktor	f _{COG}	1,10
Schräglast-Faktor (für 2 Seile)	f _{SKL}	1,00
Konsequenz-Faktor	f _{cons}	1,30

Der Gesamtfaktor für die Hebeanalyse resultiert somit zu:

•
$$f_{total, SLS} = f_{DAF} * f_{m} * f_{COG} * f_{SKL} * f_{cons} * \gamma_{G,SLS} = 1,76$$

Für die Hebeanalyse wird das Gewicht der Pfähle berücksichtigt. Es wird angenommen, dass keine Windlasten auftreten, da der Hebevorgang bei ruhigem Wetter durchgeführt werden soll.

Der vertikale Pfahllift wird nicht weiter betrachtet, da dieser im Vergleich zum horizontal (initialen) List als unkritisch angesehen wird.

IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 40 von 84

7.7 Design-Widerstände

7.7.1 Allgemeine Design Widerstände

Die Design-Widerstände (Rd) werden wie folgt bestimmt:

$$R_d = \Phi R_k$$

mit: R_k = Charakteristischer Widerstand

 Φ = Widerstandsfaktor,

Der Widerstandsfaktor Φ verhält sich wie folgt zum Materialfaktor γ_M :

$$\Phi$$
 = 1/ γ_M

7.7.2 Geotechnische Nachweise der Druckpfähle

Für den Nachweis von Druckpfählen nach DIN 1054, Ref. [VII.] werden die Design-Widerstandswerte (Rd) wie folgt bestimmt:

$$R_d = R_k / \gamma_R$$

mit: R_k: Charakteristischer Widerstand

 γ_R : Widerstandsfaktor γ_R =1,4 für Druckpfähle

7.7.3 Strukturelle Nachweise des Stahlbaus der Pfähle

Für die strukturellen Nachweis (ULS) der Pfählen nach EC3, siehe Ref. [II.], werden die Design-Widerstandswerte (Rd) wie folgt bestimmt:

$$R_d = R_k / \gamma_M$$

mit: R_k: Charakteristischer Widerstand

Die Materialwiderstandsfaktoren für den Tragsicherheitsnachweis (ULS-Analyse) werden der Norm DIN EN 1993-1-1/NA, Ref. o entnommen.

Für allgemeine Spannungsnachweise globaler Querschnitte für ULS, gilt ein Materialfaktor von:

$$\gamma_{mo}$$
 = 1,00

Für Stabilitätsnachweise globaler Querschnitte für ULS, gilt ein Materialfaktor von:

$$\gamma_{m1} = 1,10$$

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 41 von 84

7.8 Nachweis der Axialen Pfahltragfähigkeit (Äußere) - ULS

Es sei an dieser Stelle darauf hingewiesen, dass alle Dalbenpfähle immer unter axialer Druckbelastung sind. Zugpfähle treten hier nicht auf. Deswegen beziehen sich alle hier genannten Methoden und Nachweisformate auf Druckpfähle.

Gemäß Ref. [3.], sind die Nachweise der axialen Tragfähigkeit zu führen für den Fall der Pfropfenbildung (Fall 1) sowie für den Fall ohne Pfropfenbildung (Fall 2).

Für den Fall 1 (mit Pfropfen) sind die folgenden Widerstandsanteile nach Ref. [3.] berücksichtigt:

- Äußere Mantelreibung, basierend auf den BE-Bodenkennwerten
- Spitzenwiderstand der gesamten äußeren Pfahlgrundfläche (Kreisfläche), basierend auf den LE-Bodenkennwerten

Für den Fall 2 (ohne Pfropfen) sind die folgenden Widerstandsanteile nach Ref. [3.]berücksichtigt:

- Äußere Mantelreibung, basierend auf den BE-Bodenkennwerten
- Innere Mantelreibung, basierend auf den BE-Bodenkennwerten, ohne Abminderung (da kein Rammschuh)
- Spitzenwiderstand der Stahlquerschnittsfläche (Kreisring), basierend auf den LE-Bodenkennwerten

Konservativ vereinfachend und weil die axiale äußere Pfahltragfähigkeit nicht maßgebend wird, werden für die Nachweisführung die Fälle 1 und 2 zusammengeführt, indem nur noch die äußere Mantelreibung, ohne Spitzendruck und ohne innerer Mantelreibung betrachtet (auch der Stahlquerschnitt für den Spitzendruck wird vernachlässigt).

Basierend auf den oben beschriebenen Anteilen werden für beide Fälle nichtlineare T-Z/P-Y/Q-Z-Kurven nach API 2 GEO, siehe Ref. [XII.] und Ref. [3.], erstellt.

Die einzelnen Steifigkeitswerte pro Pfahlabschnitt werden mit den in Ref. [3.] angegebenen konservativen Grenzwerten für die Mantelreibung und für den Pfahlspitzendruck verglichen und ggf. überschrieben. Diese Grenzwerte sind in Ref. [3.] konservativer angegeben als in der API 2 GEO, siehe Ref. [XII.]. Sie werden in der folgenden Abbildung dargestellt.

Es sei an dieser Stelle darauf hingewiesen, dass für die Steinschüttung des Kolkschutzes die Grenzwerte für einen "dichten Sand" anzusetzen sind, wie in Ref. [3.] vorgegeben.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 42 von 84

Hauptbodenart/ Lagerungsdichte		Tragfähig- keitsbeiwert N _q in 1	Pfahlspitzendruck q _c im Grenzzustand in MN/m²	Pfahlmantelreibung f (Druck) im Grenzzustand in kN/m²
	sehr locker	8 1)	1,9 1)	47 1)
	locker	12 ¹)	2,9 1)	67 ¹⁾
Sand	mitteldicht	20	4,8	81
	dicht	40	9,6	96
	sehr dicht	50	12	115
	locker	8 1)	1,9 1)	47 1)
Schluff + Sand, schluffiger Sand	mitteldicht	12	2,9	67
	dicht	20	4,8	81
	sehr dicht	40	9,6	96

¹⁾ Gemäß den Hinweisen der API RP2GEO können die angegebenen Werte unkonservativ sein. Da das Vorhandensein locker gelagerter Sande im vorliegenden Anwendungsfall auf die marine Deckschicht und damit in der Mächtigkeit völlig untergeordnete Bodenschichten beschränkt ist, ist die hieraus resultierende mögliche Unsicherheit vernachlässigbar.

Abbildung 7-1: Grenzwerte der Mantelreibung und des Spitzendrucks, gemäß Ref. [3.], Tabelle 10

Die Berechnung des axialen Widerstands erfolgt über die Summe der Mantelreibung und des Spitzenwiderstands:

$$R_k(s) = R_{b,k}(s) + R_{s,k}(s) = q_{b,k} * A_b + \sum q_{s,k,i} * A_s$$

Mit: $R_k(s)$: Summe des Axialenwiderstands in Abhängigkeit der Tiefe s

 $R_{b,k}(s)$: Pfahlfußwiderstand an der Tiefe S

 $R_{s,k}(s)$: Pfahlmantelwiderstand in Abhängigkeit der Tiefe S

 $q_{b,k}$: Pfahlspitzenwidersand

 $q_{s,k,i}$: Pfahlmantelreibung in der Schicht i

Ab: Pfahlfußfläche

As: Pfahlmantelfläche

Da die Axiallast in den hier untersuchten Druckpfählen nahezu konstant ist, werden keine zusätzlichen Anpassungen der T-Z-Kurven für zyklische Axiallasten vorgenommen.

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 43 von 84

7.9 Nachweis der Lateralen Pfahltragfähigkeit (Äußere) - ULS

Gemäß Ref. [3.] wird der P-Y Ansatz ohne weiter Kalibrierungen zur Berücksichtigung größer Pfahldurchmesser nach Kallehave (oder anderen) zur Verifizierung der lateralen Tragfähigkeit angewandt.

Zur Berücksichtigung zyklischer lateraler Lasten wird nach Ref. [3.] der zyklische Abminderungsfaktor mit A = 0,9 angesetzt. Dieser Faktor wird zusätzlich abgemindert über den lithostatischen Druck in den oberen Bodenschichten.

Folgende Formeln werden verwendet:

$$Pd = A * p_u * \tanh \left[\frac{k * H}{A * p_u} * y \right]$$

Mit:

A = Cyclic Faktor (wird gemäß [3.] mit 0,9 angesetzt)

 p_u = Tragfähigkeit auf Tiefe unter Baggerlinie H

K = Bettungsmodul

P_d = Laterale Tragfähigkeit

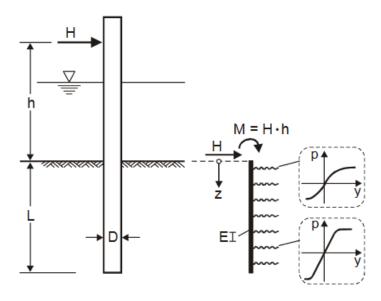


Abbildung 7-1: Statisches System für Laterale Tragfähigkeit

Der Einfluss großer Pfahldurchmesser wird in der hier projektbezogenen Anwendung als unkritisch erachtet. Deswegen werden die P-Y-Kurven entsprechend der API 2 GEO, siehe auch Ref. [XII.], nicht weiter kalibriert.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 44 von 84

7.10 Nachweise der Gebrauchstauglichkeit - SLS

Für den Nachweis der Gebrauchstauglichkeit werden die folgen 2 Kriterien überprüft:

- Maximale horizontale Auslenkung am Pfahlfuß (EL -59,5 m SKN) und am Meeresboden werden mit denen (auf gleicher Position) eines unendlich langen Pfahls verglichen. Hierzu wird ein weiteres Modell erstellt, bei dem der Pfahl 100 m Pfahleindringung hat (quasi unendlich lang).
- Maximale horizontale Auslenkung am Pfahlkopf auf Höhe der Plattform (EL +11,0 m SKN) soll kleiner als 0,5 m sein, da diese maximale Pfahlkopfverformung in die Konstruktion und Berechnungen der Plattformen und der Bücken eingeflossen ist.

Es werden die gleichen T-Z/P-Y/Q-Z-Kurven, sowie die gleiche Berechnungsmethodik, wie für die ULS-Nachweise verwendet. Allerdings werden SLS-Lastfallkombinationen mit SLS-Lastfaktoren definiert.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 45 von 84

7.11 Nachweis der Strukturellen Pfahltragfähigkeit (Innere)

Für den Nachweis der inneren Pfahltragfähigkeit werden die folgenden Spannungsnachweise geführt:

• Axialspannungen:

$$\sigma_{S,d} \leq \sigma_{R,d} = f_{y,k} / \gamma_M$$

$$\gamma_M$$
: wie in Kapitel 7.7.34.3 definiert

• Schubspannung:

$$\tau_{S,d} \leq \tau_{R,d} = f_{y,k} / (\sqrt{3} * \gamma_M)$$

$$\gamma_M$$
: wie in Kapitel 7.7.34.3 definiert

• Vergleichsspannung:

$$\sigma_{v,S,d} = \sqrt{\left(\sigma_{S,d}^2 + 3 * \tau_{S,d}^2\right)} \leq \sigma_{R,d} = f_{y,k}/\gamma_M$$

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 46 von 84

8 Lasten und Lastfallkombinationen

8.1 Allgemeine Lasten

Folgende Lasten auf die Dalbenpfähle werden betrachtet und in die folgenden Lastkategorien unterschieden:

- Ständige Lasten G:
 - o Eigengewicht der Pfähle, des marinen Bewuchses der Plattformen und der Haken (LC1)
- Veränderliche Lasten Q:
 - o Brückenreaktionslasten (LC2)
 - Fenderanlegelasten (LC3)
 - Ankerhakenlasten (LC4)
 - Wellen- und Strömungslasten (LC5)
 - Windlasten (LC6)
 - o Treib-Eislasten (LC7)
 - Schneelasten (LC8)
 - Verkehrslasten (LC9)

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 47 von 84

8.2 Eigengewichte (LC1)

Im Eigengewichtslastfall (LC1) werden die folgenden Lastanteile berücksichtigt:

- Eigengewicht des Pfahls (für alle Plattformen gleich)
- Eigengewicht des marinen Bewuchses
- Eigenwicht der Plattformen (konservativ vereinfacht ein aufgerundetes Gewicht für alle MDs und eines für alle BDs)
- Eigengewicht der Mooring-Ankerhaken (konservativ vereinfacht TQRH-Gewicht für alle 6 MDs und QQRH-Gewicht für alle 4 BDs auch wenn BD2 und BD3 ohne Haken sind)

Das Eigengewicht der Pfähle wird automatisch über die Definition von Materialdichte, Wandstärke und einer Erdbeschleunigung von $g = 9,81 \text{ m/s}_2$ im Modell berücksichtigt. Das Eigengewicht aller Pfähle resultiert zu 463,2 t pro Pfahl, gleichzeitig wird der Auftrieb mit eingerechnet.

Das Eigengewicht des marinen Bewuchses wird ebenfalls automatisch von der verwendeten Software ermittelt. Es wird eine Trockenrohdichte von $1,325 \text{ t/m}^3$ und Höhen wie folgt berücksichtigt. Insgesamt resultiert der marine Bewuchs zu 11,0 t für die BD- und zu 9,7 t für MD-Pfähle.

Tabelle 8-1: Meeresbewuchs

Als richtig vorausgesetzt.

Ebene SKN / LAT [m]		Dicke [mm]	To along the first of the	
Von	Bis	Dieke [iiiii]	Trockendichte [kg/m³]	
+4	-10	150	1,325	
-10	Boden	100	1,72,7	

Zusätzlich wird das Gewicht der Plattform als nicht-struktureller Massepunkt angesetzt. Konservativ wird für die BD-Plattformen eine maximale Masse von aufgerundet 70 t (siehe auf Kapitel 5.2.1), und für die MD-Plattformen von aufgerundet 60 t (siehe auf Kapitel 5.2.1) auf dem Pfahlkopf (11,0 m SKN) angesetzt. Dabei werden zusätzlich konservative Plattformschwerpunkte mit einer Exzentrizität zum Pfahl von 2,2 m für BDs und 3,2 m für die MDs in beiden horizontalen Richtungen (+x und +y) berücksichtigt.

Tabelle 8-2: Lasten aus Plattform für BDs (Charakteristisch ohne Lastfaktoren), bei EL +11,00 m SKN Als richtig vorausgesetzt.

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
-	-	-686,70	-1.510,74	1.510,74	-

Tabelle~8-3: Lasten~aus~Plattform~f"ur~MDs~(Charakteristisch~ohne~Lastfaktoren),~bei~EL~+11,00~m~SKN~

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
-	-	-588,60	-1.883,52	1.883,52	-

Als richtig vorausgesetzt.

Zusätzlich wird eine Last von 4,6 t für die Mooring-Haken angenommen (TQRH von Mampaey), siehe auch Referenz [5.]. Diese Last wird ebenfalls als nicht-struktureller Massepunkt auf dem Pfahlkopf aufgebracht (12,3 m SKN) mit einem Versatz des Schwerpunktes von 0,9 m in x-Richtung (orthogonal zur Richtung der Anlegefenderlast).

Zusätzlich wird eine Last von 5,6 t für die Mooring-Haken angenommen (QQRH von Mampaey), siehe auch Referenz [6.]. Diese Last wird ebenfalls als nicht-strukturelle Masse auf dem Pfahlkopf aufgebracht (12,3 m SKN) mit einem Versatz des Schwerpunktes von 0,9 m in x-Richtung (parallel zu Ankerhakenlast),

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 48 von 84

Tabelle 8-4: Lasten aus Haken für BDs (Charakteristisch ohne Lastfaktoren), bei EL +12,30 m SKN

Als richtig vorausgesetzt.

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
-	-	-45,13	=	-40,61	-

Tabelle 8-5: Lasten aus Haken für MDs (Charakteristisch ohne Lastfaktoren), bei EL +12,30 m SKN

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
-	-	-54,94	-	-49,44	-

Als richtig vorausgesetzt.

8.3 Brückenreaktionslasten (LC2)

Die maximalen Designlasten auf den Auflagern der Brücken (infolge extremen Sturms, maximaler Verkehrslast auf den Brücken, sowie Eislasten, etc.) werden als Reaktionslasten ebenfalls auf den Pfahlkopf (bei EL + 12,0 m SKN) gemäß folgender Tabelle aufgebracht. Die Momente wurden mittels konservativ geschätzter Hebelarme bestimmt.

Zudem werden diese konservativ hoch geschätzten Lasten mit den maximalen Exzentrizitäten (wie eigentlich nur für die sehr langen Brücken wirkend) auf allen Dalben-Plattformen gleich angenommen.

Es sei an dieser Stelle darauf hingewiesen, dass die im Folgenenden aufgelisteten konservativen Brückenreaktionslasten bereits alle anzuwendenden ULS-Lastfaktoren (inklusive K_{FI} nach TRAS, siehe Ref., 16) beinhalten. Deswegen werden in den Lastfallkombinationen, sie auch Kapitel 8.12, keine weiteren Lastfaktoren für diesen Lastfall (LC2) berücksichtigt.

Es sei an dieser Stelle darauf hingewiesen, dass sich die im Folgenden aufgelisteten Momente auf den Lastangriffspunkt bei EL +12,00 m SKN beziehen und nicht auf den Seeboden.

Tabelle 8-6: konserv. max. Lasten aus Brücken (Design ULS-Lasten inkl. Lastfaktoren) für BDs, bei EL +12,00 m SKN

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
260,0	650,0	-860,0	-4.800,0	2.850,0	0,00

Als richtig vorausgesetzt.

Tabelle 8-7: konserv. max. Lasten aus Brücken (Design ULS-Lasten inkl. Lastfaktoren) für MDs, bei EL +12,00 m SKN

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
440,0	315,0	-1.050,0	-3.540,0	4.065,0	0,00

Als richtig vorausgesetzt.

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 49 von 84

8.4 Fenderanlegelast (LC3)

Fenderlasten werden an allen BD-Pfählen angesetzt; nicht jedoch bei den MD-Pfählen.

Als Fender wurde der Super Cone Fender SCN 2250 von Trelleborg ausgewählt. Gemäß Referenz [4.] beträgt die maximale Fenderreaktionslast für diesen Typ: R = 3.707,6 kN, sowie das Gewicht 13,5 t.

Nach Berücksichtigung folgender Korrekturfaktoren, wird die charakteristische Fender-Reaktionslast $F_{R,c}$ wie folgt ermittelt:

$$F_{R,c}$$
 = R * AF * TF * TOL * VF

Mit AF: Winkel-Faktor; AF = 1,00 (gemäß Ref, [7.])

TF: Temperatur-Faktor; TF = 1,05 (gemäß Ref, [7.])

TOL: Toleranz-Faktor; TOL = 1,10 (gemäß Ref, [7.])

VF: Geschwindigkeits-Faktor; VF = 1,10 (gemäß Ref, [7.])

Somit ergibt sich eine charakteristische Fender-Reaktionslast von

$$F_{R,c} = 3,707,6 \text{ kN} * 1,00 * 1,05 * 1,10 * 1,10 = 4,710,5 \text{ kN}$$

Die maximale Anlegelast von 4.710,5 kN wird auf dem Pfahl in einer Höhe von +6,5 m SKN (/LAT) aufgebracht (in y-Richtung). Zusätzlich wird eine horizontale Kraft durch Reibung $H_{R,c} = F_{R,c} * \mu = 942,1$ kN mit einem Reibbeiwert von $\mu = 0,2$ berücksichtig.

Neben der Horizontalkraft aus Reibung wird diese Reibung + Fender-Eigengewicht auch in vertikaler Richtung $V_{R,c}$ angesetzt. Dabei wird das Fender-Eigengewicht von 13,5 t noch mit einem Gewichtszuschlag von 20% berücksichtigt:

$$V_{R,c} = H_{R,c} + 1,2 * m_{fender} * g = 942,1 kN + 1,2 * 13,5 t * 9,81 m/s^2 = 1.101,0 kN$$

Für die dabei entstehenden Momente wird ein Abstand zwischen der Fenderanlegelast und der Pfahlachse von 7,0 m angenommen (7,0 m = 6,5 m + 0,5 m an Pfahlinstallationstoleranz).

Die daraus resultierenden Lasten und Momente sind in folgender Tabelle dargestellt:

Tabelle 8-8: Anlegelasten (Charakteristisch ohne Lastfaktoren), bei EL +6,50 m SKN

Beschreibung der Last	FX [kN]	FY [kN]	FZ*) [kN]	MX [kNm]	MY [kNm]	MZ [kNm]
Anlegelast F _{R,c}	-	4,710,5	-	-	-	-
Horizontale Reibung am Fender H _{R,c}	942,1	-	-	-	-	6,594,8
Vertikale Reibung am Fender V _{R,c}	-	-	-1,101,0	7,707,0	-	-

^{*)} Die Vertikallast beinhaltet das Gewicht des Fenders

Zusätzlich zu den oben aufgeführten Faktoren werden für die jeweiligen Nachweise noch die Lastfaktoren nach Kapitel o aufgebracht.

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 50 von 84

8.5 Ankerhakenlast (LC4)

Ankerhakenlasten werden konservativ an allen MD-Pfählen und auch an allen BD-Pfählen angesetzt, auch wenn bei BD2 und BD3 keine Mooring-Haken vorgesehen sind. Bei allen MD-Dalben kommen Quadrupel Quick Release Hooks (QQRHs) zum Einsatz, bei den BDs Triple Quick Release Hooks (TQRHs).

Der Lastangriffspunkt für die im folgenden beschriebenen Ankerhakenlasten der MDs und BDs werden auf der folgenden Höhe angenommen: H_{total} = (Pfahlkopf über SKN) +(Plattformhöhe inkl. Platten, max für BD) + (kons. Aufger. Höhe der Leine über Hakenbasis)

$$H_{total} = H_1 + H_2 + H_3 = +11,00 \text{ m SKN} + 0,71 \text{ m} + 0,55 \text{ m}$$

 $H_{total} = +12,26 \text{ m SKN}$

8.5.1 Ankerhakenlasten aus TQRHs bei BDs

Für die Ankerlasten aus Triple Quick Release Hook (TQRH) wird ein Winkel von 80° zur Anlegelast-Richtung angenommen. Zusätzlich wird die Zugrichtung der Ankerlast mit 10° abweichend zur Horizontalen angenommen, siehe auch Referenz [7.]. Es sei an dieser Stelle darauf hingewiesen, dass nach Referenz [7.] eine Abweichung zur Horizontalen von ±10° zu berücksichtigen ist. In der hier vorliegenden statischen Berechnung wird allerdings nur die mögliche Abweichung nach unten berücksichtigt, da diese konservativ für das Pfahlbiegemoment ist. Eine Abweichung nach oben wirkt sich eher günstig aus und wird hier nicht gesondert betrachtet.

Die charakteristischen Ankerlasten für die TQRHs werden wie folgt entsprechend Referenz [7.] ermittelt und angesetzt:

$$F_{TQRH}$$
, $c = 3 \times 150 t * g * 60% = 2,649 kN,$

Dementsprechend in den oben beschriebenen Richtungen:

$$F_{TQRH}$$
, C , $X = F_{TQRH}$, $C * COS (10°) = 2,608,5 kN$

$$F_{TQRH}$$
, C , $X = F_{TQRH}$, $C * sin (10°) = 459,9 kN$

$$F_{TQRH}$$
, c , $z = F_{TQRH}$, $c * -sin (10°) = -459,9 kN$

Für die dabei entstehenden Momente wird ein konservativer Hebelarm für die Ankerhakenlast von 1,50 m angenommen,

Tabelle 8-9: Ankerlasten (Charakteristisch ohne Lastfaktoren), TQRH bei BDs, bei EL +12,26 m SKN

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
2,608,5	459,9	-459,9	-	689,9	689,9

8.5.2 Ankerhakenlasten aus QQRHs bei MDs

Für die Ankerlasten aus Quadrupel Quick Release Hook (QQRH) wird in x-Richtung angenommen. Zusätzlich wird die Zugrichtung der Ankerlast mit 10° abweichend zur Horizontalen angenommen, siehe auch Referenz [7.].Die charakteristischen Ankerlasten für die QQRHs werden wie folgt entsprechend Referenz [7.] ermittelt und angesetzt:

$$F_{QQRH,C} = 4 \times 150 t * g * 60\% = 3,532 kN,$$

Dementsprechend in den oben beschriebenen Richtungen:

Für die dabei entstehenden Momente wird ein konservativer Hebelarm für die Ankerhakenlast von 1,50 m angenommen.

Tabelle 8-10: Ankerlasten (Charakteristisch ohne Lastfaktoren), QQRH bei MDs, bei EL +12,26 m SKN

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 51 von 84

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
3,532	-	-613,3	-	919,9	-

8.6 Wellen- und Strömungslast (LC5)

Wellen- und Strömungslasten werden in einem gemeinsamen Lastfall definiert, da sich die Partikelgeschwindigkeiten aufsummieren.

Es wird eine maximale 100-jahres Strömung von c = 1,88 m/s (siehe auch Ref, [1.]) berücksichtigt und konservativ über die gesamte Wassertiefe konstant angesetzt.

Es wird eine maximale 100-Jahres Welle von H_{max} = 4,25 m betrachtet. Gemäß DNV-RP-C205 wird diese maximale Welle mit der folgenden Bandbreite von zugehörigen Perioden berücksichtigt:

$$2,55 * H_{max}^{1/2} \le T \le 3,32 * H_{max}^{1/2}$$

Dementsprechend werden für die 100-Jahres Welle zugehörigen Perioden von T = 5,25 sec bis 6,844 sec betrachtet.

Wellen- und Strömungslasten werden konservativ für die maximale Wassertiefe von HSWL = +7,16 m SKL ermittelt, da dies zu einem maximalen Biegemoment über Seeboden führt.

Für beide Standorte wird die Wellentheorie nach Stokes 11^{ter} Ordnung angewandt, was entsprechend dem folgenden Diagrammen innerhalb des Anwendungsbereiches (von mind. Stokes 5^{ter} Ordnung) liegt:

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 52 von 84

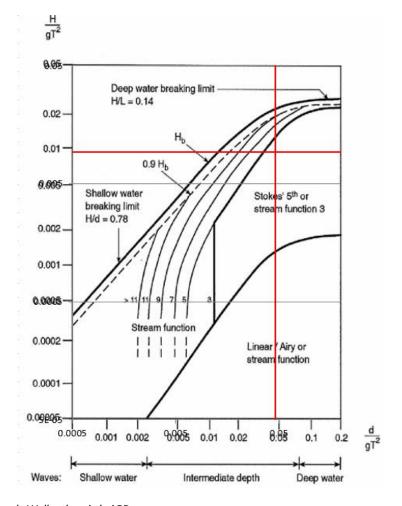


Abbildung 8-1: Anzuwendende Wellentheorie bei BDs

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 53 von 84

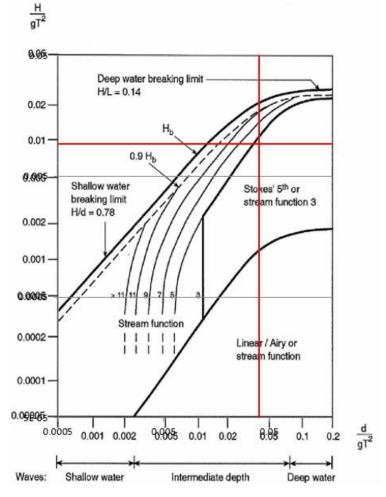


Abbildung 8-2: Anzuwendende Wellentheorie bei MDs

Die Widerstandskoeffizienten C_D und die Trägheitskoefizienten C_M werden in abhängig von der Reynoldszahl gemäß Referenz [XIV.] bestimmt.

Des Weiteren werden weder ein Strömungsblockeffekt (current blockage effect) noch ein Verschattungskoefizient (shading effect) berücksichtigt.

Wellenkräfte werden automatisch von der verwendeten Software auf Basis der Morrison-Formel ermittelt. Ein voller Wellendurchlauf wird in gleichmäßige Zeitschritte unterteilt. Die Nachweise werden für die Wellenposition durchgeführt, aus der sich die folgenden zwei Maximalen ergeben:

- maximaler Base Shear / Horizontalkraft über Seeboden
- maximales Biegemoment am Seeboden (hier maßgebend)

Für die BDs (maximale Horizontalkraft in y-Richtung) werden Wellen- und Strömungslasten ebenfalls konservativgleichzeitig in y-Richtung wirkend angesetzt. Wohingegen bei den MDs (maximale Horizontalkraft in x-Richtung) die Wellen- und Strömungslasten konservativ gleichzeitig in x-Richtung angesetzt werden.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 54 von 84

Die Wellen und Strömungslasten werden unter Berücksichtigung des maximalen marinen Bewuchses (mit erhöhtem Durchmesser) ermittelt.

Es werden die folgenden maximalen Horizontalkräfte und Momente infolge Welle und Strömung auf Meeresboden für die beiden Standorte ermittelt:

- Max. charakterisitsche Horizontalkraft/ Base Shear (BS):
 - o $BS_c = 796 \text{ kN (for BD)}$
 - \circ BS_c = 782 kN (for MD)
- Max. charakterisitsches Overturning Moment (OTM):
 - \circ OTM_c = 10.996 kNm (for BD)
 - \circ OTM_c = 9.562 kNm (for MD)

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 55 von 84

8.7 Windlast (LC6)

Als Windlasten werden die Lasten auf den Pfahl und die Lasten auf die Plattform aufgebracht. Gemäß DIN EN 1991-1-4/NA, Ref. [IX.], werden die Windlasten auf den Pfahl automatisch mittels der verwendeten Software über den Pfahlaußendurchmesser und der Windgeschwindigkeit von v = 30 m/s bei + 10,00 m SKN ermittelt. Die entsprechenden Windlasten auf die Plattformen werden konservativ ermittelt und basieren auf einen Windstaudruck von $q_{b,0}=0.56\frac{kN}{m2}$ für Windzone WZ4, siehe auch Ref. [IX.]. Die Windlasten auf die Plattformen werden mit den konservativen Windflächen, wie in Kapitel 5.2.2 beschrieben, berücksichtigt.

 $A = 97,4 \text{ m}^2$ für BDs $A = 72,1 \text{ m}^2$ für MDs

Als Lastangriffspunkt wird die mittlere Höhe mit z wie folgt ermittelt:

z = +11,00 m SKL + 0,7 m + 10 m / 2 = +16,7 m SKN für BDs

z = +11,00 m SKL + 0,7 m + 5,2 m / 2 = +14,3 m SKN für MDs

Somit ermittelt sich der anzusetzenden Böhenstaudruck demnach zu

Für BD: $q_p = 2.3 \cdot q_{b,0} \cdot \left(\frac{z}{10m}\right)^{0.27}$

 $q_p=1,\!48\;kN/m2$

Für MD: $q_p = 2.3 \cdot q_{b,0} \cdot \left(\frac{z}{10m}\right)^{0.27}$

 $q_n = 1,42 \ kN/m2$

Es wird ein aerodynamischer Beiwert von $C_f = 1,0$ für die gesamte, sehr groß geschätzte Fläche benutzt. Dies ist sehr konservativ, da die effektive Netto-Windangriffsfläche deutlich geringer ist.

Die maximale charakteristische Windlast resultiert somit zu:

 $W_c = q_p *A * c_F = 1,48 \text{ kN/m}^2 * 97,4 \text{ m}^2 * 1,0 = 144 \text{ kN}$ für BDs

Da die Windlast insgesamt schon sehr konservativ angesetzt wird, wird auf die zusätzliche Berücksichtigung einer Exzentrizität verzichtet.

Für die BDs (maximale Horizontalkraft in y-Richtung) wird die Windlast ebenfalls konservativ gleichzeitig in y-Richtung wirkend angesetzt, wohingegen bei den MDs (maximale Horizontalkraft in x-Richtung) die Windlast konservativ gleichzeitig in x-Richtung angesetzt wird,

Tabelle 8-11: Windlast (Charakteristisch ohne Lastfaktoren) bei BDs, bei EL +16,70 m SKN

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
-	144	-	-	-	-

Tabelle 8-12: Windlast (Charakteristisch ohne Lastfaktoren) bei MDs, bei EL +14,30 m SKN

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
102	-	-	-	-	-

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 56 von 84

8.8 Treibeislast (LC 7)

Die waagerecht wirkende Eislast infolge einer geschlossenen Eisdecke wird gemäß Referenz [XVI.] mit dem für die Pfahlauslastung maximalen Hebelarm auf 1,82 m SKN angesetzt. Die Eislast beträgt p = 200 kN/m für eine Eisdicke von 40 cm. Für die Gesamtlast wird der komplette Pfahldurchmesser von D = 4,5 m berücksichtigt, was zu einer charakteristischen Eislast von Ec = p *D = 900 kN führt.

Für die BDs (maximale Horizontalkraft in y-Richtung) wird die Eislast ebenfalls konservativ gleichzeitig in y-Richtung wirkend angesetzt, wohingegen bei den MDs (maximale Horizontalkraft in x-Richtung) die Eislast konservativ gleichzeitig in x-Richtung angesetzt wird,

Infolge Eislast wirkt an dem Lastangriffspunkt (bei EL +1,82 m SKN) kein Moment auf den Pfahl.

Gemäß Referenz [XVI.] wird die Eislast mit den Eigengewichtslasten, Windlasten und Brücken-Reaktionslasten überlagert, nicht jedoch mit Fender- und Hakenlasten.

Tabelle 8-13: Treibeislast (Charakteristisch ohne Lastfaktoren) bei BDs, bei EL +1,82 m SKN

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
-	900	-	-	-	-

Tabelle 8-14: Treibeislast (Charakteristisch ohne Lastfaktoren) bei MDs, bei EL +1,82 m SKN

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
900	-	-	-	-	-

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 57 von 84

8.9 Schneelast (LC8)

Wie in den Entwurfsgrundlagen definiert wird eine Schneelast von s = 0,52 kN/m² angesetzt. Die Schneelasten auf die Plattformen werden mit den konservativen Grundflächen wie in Kapitel 5.2.2 beschrieben

berücksichtigt.

 $A = 110 \text{ m}^2$ für BDs $A = 124 \text{ m}^2$ für MDs

Die maximale charakteristische Schneelast resultiert somit zu:

 $S = s *A = 0,52 \text{ kN/m}^2 * 110 \text{ m}^2 = 57,2 \text{ kN}$ für BDs

 $S = s *A = 0.52 \text{ kN/m}^2 * 124 \text{ m}^2 = 64.5 \text{ kN}$ für MDs

Es werden die gleichen konservativen Hebelarme als Exzentrizitäten wie für die Plattformeigengewichte berücksichtigt: 2,2 für BDs und 3,2 m für die MDs (sowohl in -x- als auch in y-Richtung).

Die Schneelasten werden für einen Lastangriffspunkt bei EL +11,7 m SKN definiert.

Tabelle 8-15: Schneelast (Charakteristisch ohne Lastfaktoren) bei BDs, bei EL +11,7 m SKN

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
0,0	0,0	-57,2	-125,8	125,8	0,0

Tabelle 8-16: Schneelast (Charakteristisch ohne Lastfaktoren) bei MDs, bei EL +11,7 m SKN

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
0,0	0,0	-64,5	-206,3	206,3	0,0

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 58 von 84

8.10 Verkehrslast (LC9)

Wie in den Entwurfsgrundlagen definiert wird eine Verkehrslast von $q = 2,00 \text{ kN/m}^2$ angesetzt.

Die Verkehrslasten auf die Plattformen werden mit den konservativen Grundflächen wie in Kapitel 5.2.2 beschrieben berücksichtigt.

 $A = 110 \text{ m}^2$ für BDs $A = 124 \text{ m}^2$ für MDs

Die maximale charakteristische Verkehrslast resultiert somit zu:

 $Q = q *A = 2,00 \text{ kN/m}^2 * 110 \text{ m}^2 = 220 \text{ kN}$ für BDs

 $Q = q *A = 2,00 \text{ kN/m}^2 * 124 \text{ m}^2 = 248 \text{ kN}$ für MDs

Es werden die gleichen konservativen Hebelarme als Exzentrizitäten wie für die Plattformeigengewichte berücksichtigt: 2,2 für BDs und 3,2 m für die MDs (sowohl in -x- als auch in y-Richtung).

Die Verkehrslasten werden für einen Lastangriffspunkt bei EL +11,7 m SKN definiert.

Tabelle 8-17: Schneelast (Charakteristisch ohne Lastfaktoren) bei BDs, bei EL +11,7 m SKN

FX	FY	FZ	MX	MY	MZ
[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
0,0	0,0	-220,0	-484,0	484,0	0,0

Tabelle 8-18: Schneelast (Charakteristisch ohne Lastfaktoren) bei MDs, bei EL +11,7 m SKN

	FX	FY	FZ	MX	MY	MZ
	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
Ī	0,0	0,0	-248,0	-793,6	793,6	0,0

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 59 von 84

8.11 Übersicht der einzelnen Lastfälle

Eine Übersicht der charakteristischen Lasten für MDs und BDs wird in den folgenden Tabellen geliefert.

Es sei an dieser Stelle darauf hingewiesen, dass die folgenden Werte für Momente sich auf den jeweiligen Lastangriffspunkt und nicht auf den Seeboden beziehen.

Tabelle 8-19: Übersicht aller Lastfälle (Charakteristisch ohne Lastfaktoren) bei BDs

charakteristiche Lastfälle		FX	FY	FZ	MX	MY	MZ	aufgebracht bei EL
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	[m SKN]
LC 1.1	Pfahl (inkl. Auftrieb + MG)	0,0	0,0	-4,151,2	0,0	0,0	0,0	0,0
LC 1.2	Gewicht Plattform	0,0	0,0	-686,7	-1.510,7	1.510,7	0,0	11,0
LC 1.	Gewicht QRH	0,0	0,0	-45,1	0,0	40,6	0,0	12,3
LC 2	Brückenlasten	318,0	640,0	-1.060,0	-18.605,0	8.586,0	0,0	12,0
LC 3	Fenderanlegelasten	942,1	4.710,5	-1.101,0	-7.707,00	0,0	6.594,7	6,5
LC 4	Ankerlasten	2.608,5	-459,9	-459,9	0,0	689,9	689,9	12,3
LC 5	Welle/Strömung	0,0	795,5	0,0	0,0	0,0	0,0	0,4
LC 6	Wind	0,0	144,0	0,0	0,0	0,0	0,0	16,7
LC 7	Treibeislast	0,0	900,0	0,0	0,0	0,0	0,0	1,8
LC 8	Schneelast	0,0	0,0	-57,2	-125,8	125,8	0,0	11,7
LC 9	Verkehrslast	0,0	0,0	-220,0	-484,0	484,0	0,0	11,7

Tabelle 8-20: Übersicht aller Lastfälle (Charakteristisch ohne Lastfaktoren) bei MDs

charakteristiche Lastfälle		FX	FY	FZ	MX	MY	MZ	aufgebracht bei EL
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]	[m SKN]
LC 1.1	Pfahl (inkl. Auftrieb + MG)	0,0	0,0	-4,138,4	0,0	0,0	0,0	0,0
LC 1.2	Gewicht Plattform	0,0	0,0	-588,6	-1.883,5	1.883,5	0,0	11,0
LC 1.3	Gewicht QRH	0,0	0,0	-54,9	0,0	-49,4	0,0	12,3
LC 2	Brückenlasten	318,0	640,0	-1.060,0	-18.605,0	8.586,0	0,0	12,0
LC 4	Ankerlasten	3.531,6	0,0	-613,3	0,0	920,0	0,0	12,3
LC 5	Welle/Strömung	782,3	0,0	0,0	0,0	0,0	0,0	1,0
LC 6	Wind	102,3	0,0	0,0	0,0	0,0	0,0	14,3
LC 7	Treibeislast	900,0	0,0	0,0	0,0	0,0	0,0	1,8
LC 8	Schneelast	0,0	0,0	-64,5	-206,3	206,3	0,0	11,7
LC 9	Verkehrslast	0,0	0,0	-248,0	-793,6	793,6	0,0	11,7

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		TES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 60 von 84

8.12 Lastfallkombination

Die Lastfaktoren, wie in den Kapitel 7.4 und 7.5 beschreiben, finden auf die hier definierten Lastfälle wie folgt Anwendung:

Tabelle 8-21: Lastfallkombinationen für Anlegedalben (BDs)

Lastfall				SLS Lastfallkombinationen nach (siehe Kapitel 7)					
		LCOM1	LCOM2	LCOM3	LCOM4				
LC 1	Eigengewichte	1,35	1,35	1,00	1,00				
LC 2	Brückenlasten*	1,00	1,00	1,00	1,00				
LC 3	Anlegelasten	1,50	-	1,00	-				
LC 4	Ankerlasten	1,50	-	1,00	-				
LC 5	Welle/Strömung	1,50	-	1,00	-				
LC 6	Wind	1,65	1,65	1,10	1,10				
LC 7	Treibeislast	-	1,65	-	1,10				
LC 8	Schneelast	1,65	1,65	1,10	1,10				
LC 9	Verkehrslast	1,50	1,50	1,00	1,00				
*ULS Fakt	*ULS Faktoren in Lasten enthalten								

Tabelle 8-22: Lastfallkombinationen für Ankerdalben (MDs)

Lastfall			ULS Lastfallkombinationen (siehe Kapitel 7)		SLS Lastfallkombinationen nach (siehe Kapitel 7)				
			LCOM ₂	LCOM3	LCOM4				
LC 1	Eigengewichte	1,35	1,35	1,00	1,00				
LC 2	Brückenlasten*	1,00	1,00	1,00	1,00				
LC 4	Ankerlasten	1,50	-	1,00	-				
LC 5	Welle/Strömung	1,50	-	1,00	-				
LC 6	Wind	1,65	1,65	1,10	1,10				
LC 7	Treibeislast	-	1,65	-	1,10				
LC 8	Schneelast	1,65	1,65	1,10	1,10				
LC 9 Verkehrslast		1,50	1,50	1,00	1,00				
*ULS Fak	*ULS Faktoren in Lasten enthalten								

IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 61 von 84

9 Nachweisführung und Ergebnisse

9.1 Model Beschreibung

9.1.1 Allgemeine Beschreibung

Das folgende Bild zeigt die Hauptabmessung der Berechnungsmodelle für BDs und MDs, einschließlich der Dummy-Strukturen der oberen Plattformen. Außerhalb der Wasserwechselzone wird der Pfahlquerschnitt wird Rd 4500 x 60 mm berücksichtigt.

Für die BD-Plattformen besteht die Dalbengeometrie aus einem 25,2-m-Pfahlabschnitt oberhalb des neuen Meeresbodens und einem 45,3-m-Abschnitt unterhalb des Meeresbodens (hier Oberkante Kolkschutz). Für die MD-Plattformen besteht die Dalbengeometrie aus einem 22,2-m-Pfahlabschnitt oberhalb des neuen Meeresbodens und einem 48,3-m-Abschnitt unterhalb des Meeresbodens. Die Gesamtpfahllänge für beide Plattformtypen beträgt L = 70,5 m.

Für die Modellierung wird der Pfahl in mehrere kleinere Abschnitte unterteilt, um die Gesamtbiegung besser widerzuspiegeln. Der Einzelpfahl wiegt 463,2 t (un-faktorisiert und ohne Aufschläge).

Eine effektive Länge von 50,0 m für BDs und 47,0 m für MDs, wird in Abhängigkeit vom Momentennnullpunkt bestimmt und im Modell für die Knicknachweise definiert. Ein globaler Beulfaktor von 2,0 für Kragarme wird angenommen.

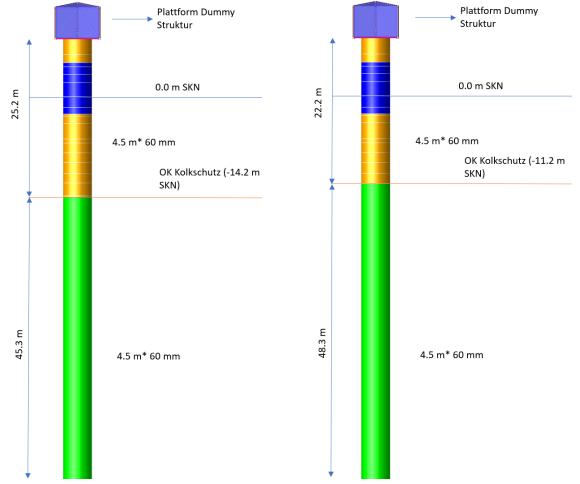


Figure 9-1: Übersicht des Model für BD (links) und MD (rechts) – Wasserwechselzone in Blau

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 62 von 84

9.1.2 Wasserwechselzone und Korrosionszuschlag

Die Korrosionsrate wird im Allgemeinen nach der Ref. DIN 18088 [VI.] definiert und ist wie folgt:

- V_{corr} = 0,01 mm / Jahr für außenliegende Strukturelemente, oberhalb der Wasserwechselzone (ohne Korrosionsschutzanstrich)
- V_{corr} = 0,30 mm / Jahr für außenliegende Strukturelemente, innerhalb der Wasserwechselzone
- V_{corr} = 0,15 mm / Jahr für innenliegende Oberflächen, welche nur unregelmäßig von Wasser bedeckt werden

Obwohl die geplante Lebensdauer des Terminals aktuell momentan 5 Jahre beträgt, wird die Pfahlwandstärke innerhalb der Wasserwechselzone mit einem um den Korrosionszuschlag konservativ entsprechend 50 Jahren nachgewiesen (0,30 mm/Jahr über den Zeitraum).

Die Wasserwechselzone erstreckt sich von +7,16 m SKN / LAT bis -1,03 m SKN / LAT.

Für äußere Strukturelemente innerhalb der Wasserwechselzone:

•
$$C_A = 0.3 \frac{mm}{Jahr} \cdot (50 \text{ Jahre}) = 15mm$$

Für innere Strukturelemente:

•
$$C_I = 0.15 \frac{mm}{Jahre} \cdot (50 \, Jahre) = 7.5 mm$$

Demnach ist der Pfahlquerschnitt innerhalb der Wasserwechselzone wie folgt berücksichtigt: Rd 4470 x 52,5 mm.

Da der Stahlbau oberhalb der Wasserwechselzone als ausreichend gegen Korrosion geschützt angenommen (Anstrich) wird, wird außerhalb der Wasserwechselzone kein weiterer Korrosionszuschlag berücksichtigt.

Da der Pfahl zusätzlich mit einem ausreichend dimensionierten Anoden-System zu versehen ist, wird auch unterhalb der Wasserwechselzone kein weiterer Korrosionszuschlag berücksichtigt.

9.1.3 Geflutete Querschnitte

Alle Querschnitte unterhalb der höchsten Wasserstandes HSWL = 7,16 m SKN werden als geflutet definiert.

9.1.4 Kolkeffekte

Da für alle Dalben-Standorte ein ausreichender Kolkschutz eingebaut wird, wird der Effekt einer Kolkausbildung hier nicht berücksichtigt.

9.1.5 Mariner Bewuchs

Für die strukturelle Auslegung (insbesondere für die Ermittlung der Wellen- und Strömungskräfte) wird Meeresbewuchs berücksichtigt, wie in der folgenden Tabelle definiert.

Tabelle 9-1: Meeresbewuchs

Als richtig vorausgesetzt.

Ebene SKN / LAT [m]		Dicke [mm]	Trockendichte	Rauigkeit	
Von	Bis	Siene [iiiii]	[kg/m³]	[mm]	
+4	-10	150	1,325	30	
-10	Meeresboden	100	,,,,,,,		

9.2 Randbedingungen

Der BD-Pfahl ist 45,3 m in den Boden eingebunden; der MD-Pfahl 48,3 m. Der Boden ist mit nicht-linearen Federn modelliert (P-Y; T-Z und Q-Z Kurven). BE Bodendaten werden für die Ermittlung der Bodenfedern herangezogen.

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 63 von 84

9.3 Ergebnisse

9.3.1 Übersicht der Reaktionslasten auf Meeresboden für Einzellastfälle und Kombinationen

In den folgenden Tabellen sind die Summe der Kräfte und Momente über Meeresboden für beide Plattformtypen (MD und BD) und pro Lastfall und auch pro Lastfallkombination zusammengefasst.

Tabelle 9-2: Kräfte und Momente über Meeresboden pro Lastfall, BDs

	Lastfälle	FX - (Axial) [kN]	FY - (Horizontal) [kN]	FZ - (Horizontal) [kN]	MX - (Torsion) [kNm]	MY - (Biegung) [kNm]	MZ - (Biegung) [kNm]
LC 1.2	Gewicht Plattform	0,0	0,0	-686,7	-1.510,7	1.510,7	0,0
LC 1.3	Gewicht QRH	0,0	0,0	-45,1	0,0	40,6	0,0
LC 2	Brückenlasten	260,0	650,0	-860,0	-21.830,0	9.662,0	0,0
LC 3	Fenderanlegelasten	942,1	4.710,5	-1.101,0	-105.214,4	19.501,5	6.594,7
LC 4	Ankerlasten	2.608,5	-459,9	-459,9	12.187,4	69.815,2	689,9
LC 5	Welle/Strömung	0,0	795,5	0,0	-10.996,3	0,0	0,0
LC 6	Wind	0,0	144,0	0,0	-4.449,6	0,0	0,0
LC 7	Treibeislast	0,0	900,0	0,0	-14.400,0	0,0	0,0
LC 8	Schneelast	0,0	0,0	-57,2	-125,8	125,8	0,0
LC 9	Verkehrslast	0,0	0,0	-220,0	-484,0	484,0	0,0

Tabelle 9-3: Kräfte und Momente über Meeresboden pro Lastfall, MDs

	Lastfälle	FX - (Axial)	FY - (Horizontal)	FZ - (Horizontal)	MX - (Torsion)	MY - (Biegung)	MZ - (Biegung)
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
LC 1.2	Gewicht Plattform	0,0	0,0	-588,6	-1.883,5	1.883,5	0,0
LC 1.3	Gewicht QRH	0,0	0,0	-54,9	0,0	-49,4	0,0
LC 2	Brückenlasten	440,0	315,0	-1.050,0	-11.131,5	14.669,0	0,0
LC 4	Ankerlasten	3.531,6	0,0	-613,3	0,0	87.091,0	0,0
LC 5	Welle/Strömung	763,5	0,0	0,0	0,0	9.553,2	0,0
LC 6	Wind	102,3	0,0	0,0	0,0	2.946,2	0,0
LC 7	Treibeislast	900,0	0,0	0,0	0,0	12.510,0	0,0
LC 8	Schneelast	0,0	0,0	-64,5	-206,3	206,3	0,0
LC 9	Verkehrslast	0,0	0,0	-248,0	-793,6	793,6	0,0

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur		TES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 64 von 84

Tabelle 9-4: Kräfte und Momente über Meeresboden pro Lastfallkombination, BDs

Lastfal	Lastfallkombinationen		FY - (Horizontal) [kN]	FZ - (Horizontal) [kN]	MX - (Torsion) [kNm]	MY - (Biegung) [kNm]	MZ - (Biegung) [kNm]
LCOM1	ULS	5.585,9	8.456,7	-6.664,7	-188.179,9	146.664,7	10.926,8
LCOM2	ULS	260,0	2.372,6	-4.323,4	-55.904,9	12.689,8	0,0
LCOM3	SLS	3.810,6	5.854,5	-4.954,9	-132.881,0	101.152,3	7.284,6
LCOM4	3L3	260,0	1.798,4	-3.394,0	-44.697,7	11.835,7	0,0

Tabelle 9-5: Kräfte und Momente über Meeresboden pro Lastfallkombination, MDs

Lastfallkombinationen		FX - (Axial)	FY - (Horizontal)	FZ - (Horizontal)	MX - (Torsion)	MY - (Biegung)	MZ - (Biegung)
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
LCOM1	ULS	7.051,5	315,0	-5.090,6	-15.205,0	168.503,4	0,0
LCOM2	ULS	2.093,8	315,0	-4.170,7	-15.205,0	44.178,6	0,0
LCOM3	SLS	4.847,7	315,0	-3.939,5	-14.035,5	117.408,7	0,0
LCOM4	3L3	1.542,5	315,0	-3.326,2	-14.035,5	34.525,5	0,0

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur		TES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 65 von 84

9.3.2 Axiale Pfahltragfähigkeiten

Der Nachweis der axialen Pfahltragfähigkeit wird nach DIN 1054, siehe Ref. [VII.], geführt.

Die folgende Tabelle gibt einen Überblick zu der ermittelten charakteristischen axialen Pfahltragfähigkeiten. Mit dem Widerstandsbeiwert γ_R wie in Kapitel 7.7.2 beschreiben, wird die Design-Tragfähigkeit und mit der maximalen axialen Design-Last aus LKOM 1 verglichen. Die entsprechenden resultierenden Auslastungen der axialen Pfahltragfähigkeit sind in der folgenden Tabelle zusammengefasst.

Tabelle 9-6: Übersicht über die Auslastung der axialen Pfahltragfähigkeit

Dalbenpfahl	Design- Axiallast Sd [kN]	Charakt. Axiale Tragfähigkeit Rk [kN]	Widerstands- beiwert γ _R (Druckpfahl)	Design Axiale Tragfähigkeit R _d = R _k /γ _R [kN]	Auslastung
BD1	-10.217,8	-48.701,4	1,4	-34.786,7	29%
BD2	-10.217,8	-46.329,5	1,4	-33.092,5	31%
BD3	-10.217,8	-48.743,8	1,4	-34.817,0	29%
BD4	-10.217,8	-55.403,1	1,4	-39.573,6	26%
MD1	-8.903,9	-60.566,9	1,4	-43.262,1	21%
MD2	-8.903,9	-52,453,2	1,4	-37.466,6	24%
MD3	-8.903,9	-55.356,7	1,4	-39.540,5	23%
MD4	-8.903,9	-47.882,4	1,4	-34.201,7	26%
MD5	-8.903,9	-51,344,2	1,4	-36.674,4	24%
MD6	-8.903,9	-53.817,8	1,4	-38.441,3	23%

Die maximale Auslastung der axialen Tragfähigkeit resultiert zu 31% und tritt bei Pfahl BD2 auf.

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 66 von 84

9.3.3 Laterale Pfahltragfähigkeiten

Die folgende Tabelle gibt einen Überblick zu der ermittelten charakteristischen lateralen Pfahltragfähigkeiten. Mit dem Widerstandsbeiwert γ_R wie in Kapitel 7.7.2 beschreiben, wird die Design-Tragfähigkeit und mit der maximalen lateralen Design-Last aus LKOM 1 verglichen.

Tabelle 9-7: Übersicht über die Auslastung der lateralen Pfahltragfähigkeit

Dalbenpfahl	Design- Laterallast Sd [kN]	Charakteristische Laterale Tragfähigkeit R _k [kN]	Widerstands- beiwert γ _R (Druckpfahl)	Design laterale Tragfähigkeit Rd = Rk/γR [kN]	Auslastung
BD1	10.135,0	1.029.960	1,4	735.685,4	1,4%
BD2	10.135,0	1.022.492	1,4	730.351,8	1,4%
BD3	10.135,0	965.109	1,4	689.363,3	1,5%
BD4	10.135,0	1.072.140	1,4	765.814,4	1,3%
MD1	7.086,6	1.470.229	1,4	1.050.163,8	0,7%
MD2	7.086,6	1.364.071	1,4	974.336,7	0,7%
MD3	7.086,6	1.254.132	1,4	895.808,9	o , 8%
MD4	7.086,6	1.115.764	1,4	796.974,1	0,9%
MD5	7.086,6	1.509.740	1,4	1.078.385,4	0,7%
MD6	7.086,6	1.439.077	1,4	1.027.911,9	0,7%

Die maximale Auslastung der lateralen Pfahltragfähigkeit tritt bei Pfahl BD3 auf und resultiert zu 1,5 %.

Insgesamt ist die Auslastung der lateralen Pfahltragfähigkeit noch geringer als die der axialen Pfahltragfähigkeit, somit ebenso unkritisch und nicht maßgebend.

Für die Ermittlung der charakteristischen axialen Pfahltragfähigkeit pro Pfahlstandort wird auf die folgenden detaillierten Auflistungen verwiesen.

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur		TES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 67 von 84

Tabelle 9-8: Ermittlung der charakteristischen lateralen Pfahltragfähigkeit BD1

Tiefe Unter Baggerlinie	Segment Länge	Cyclische Faktoren	Lateraler Widerstand	P-Faktor	Laterale Tragfähigkeit Pro Segment
	Li	А	Pu	pf	PD=p*Li*pf
[m]	[m]	[-]	[kN/m]	[-]	[kN]
0		0,01	0,61	1	0,0
1,4	1,4	0,1	30,38	1	1,4
1,4		0,12	27,94	1	1,3
1,96	0,56	0,15	42,80	1	1,2
1,96	_	0,16	69,39	1	40,0
7,36	5,4	0,56	1355,28	1	1.366,1
7,36		0,58	1823,86	1	2.820,9
11,36	4	0,86	5346,61	1	6.130,8
11,36	_	0,88	10096,76	1	29.617,2
16,36	5	0,9	19009,44	1	28.514,2
16,36		0,9	14999,14	1	98.994,3
27,36	11	0,9	34984,65	1	115.449,3
27,36		0,9	33310,40	1	239.834,9
39,36	12	0,9	58760,13	1	211.536,5
39,36		0,9	60700,82	1	149.324,0
43,46	4,1	0,9	69689,31	1	85.717,9
43,46	. 0 :	0,9	35968,87	1	39.709,6
45,3	1,84	0,9	37862,42	1	20.900,1
			•	Summe PD	1.029.959,5

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur		TES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 68 von 84

Tabelle 9-9: Ermittlung der charakteristischen lateralen Pfahltragfähigkeit BD2

Tiefe Unter Baggerlinie	Segment Länge	Cyclische Faktoren	Lateraler Widerstand	P-Faktor	Laterale Tragfähigkeit Pro Segment
	Li	A	Pu	pf	PD=p*Li*pf
[m]	[m]	[-]	[kN/m]	[-]	[kN]
О		0,00	0,00	1	0,0
1,4	1,4	0,11	30,38	1	1,6
1,4		0,12	31,41	1	15,2
7,3	5,9	0,56	1105,26	1	1.208,6
7,3		0,57	1621,08	1	7.121,4
18,8	11,5	0,90	12027,07	1	41.493,4
18,8	- 6	0,90	18056,76	1	82.338,8
26,4	7,6	0,90	31561,72	1	71.960,7
26,4	2.42	0,90	28348,20	1	58.170,5
29,82	3,42	0,90	34406,13	1	35.300,7
29,82	0	0,90	38807,57	1	216.080,5
39,1	9,28	0,90	58744,76	1	163.545,4
39,1	4.00	0,90	64212,51	1	191.867,0
44,08	4,98	0,90	75416,33	1	112.672,0
44,08		0,90	36692,68	1	26.859,0
45,3	1,22	0,90	37862,42	1	13.857,6
			•	Summe PD	1.022.492,5

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 69 von 84

Tabelle 9-10: Ermittlung der charakteristischen lateralen Pfahltragfähigkeit BD3

Tiefe Unter Baggerlinie	Segment Länge	Cyclische Faktoren	Lateraler Widerstand	P-Faktor	Laterale Tragfähigkeit Pro Segment
	Li	A	Pu	pf	PD=p*Li*pf
[m]	[m]	[-]	[kN/m]	[-]	[kN]
0	1,4	0,016	0,00	1	0,0
1,4	1,4	0,1	30,38	1	1,4
1,4	2 92	0,123	31,43	1	7,3
4,22	2,82	0,322	289,16	1	87,5
4,22		0,338	429,37	1	512,8
9,52	5,3	0,7256	3016,32	1	3.866,6
9,52	9.7	0,7424	4415,04	1	18.136,7
17,82	8,3	0,9	15133,80	1	37.683,2
17,82	4.7	0,9	20093,57	1	74.748,1
24,02	6,2	0,9	33811,71	1	62.889,8
24,02	6 22	0,9	25383,56	1	94.731,4
30,24	6,22	0,9	36898,45	1	68.852,5
30,24	10.74	0,9	40635,36	1	261.854,3
40,98	10,74	0,9	64216,94	1	206.907,0
40,98	4,32	0,9	33086,55	1	85.760,3
45,3		0,9	37862,42	1	49.069,7
	965.108,6				

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 70 von 84

Tabelle 9-11: Ermittlung der charakteristischen lateralen Pfahltragfähigkeit BD4

Tiefe Unter Baggerlinie	Segment Länge	Cyclische Faktoren	Lateraler Widerstand	P-Faktor	Laterale Tragfähigkeit Pro Segment
	Li	Α	Pu	pf	PD=p*Li*pf
[m]	[m]	[-]	[kN/m]	[-]	[kN]
О		0,0167	0,00	1	0,0
1,4	1,4	0,106	30,38	1	1,5
1,4	(0,123	32,39	1	7,9
4,36	2,96	0,332	326,58	1	107,0
4,36		0,349	507,44	1	519,5
8,76	4,4	0,667	2688,00	1	2.629,6
8,76		0,6844	3801,13	1	15.262,1
17,56	8,8	0,9	15815,85	1	41.753,8
17,56		0,9	16673,12	1	120.046,5
29,56	12	0,9	39181,23	1	141.052,4
29,56	_	0,9	50123,36	1	120.296,1
33,56	4	0,9	62319,21	1	74.783,1
33,56	_	0,9	48158,27	1	202.264,7
40,56	7	0,9	63581,45	1	133.521,0
40,56	2.2	0,9	66339,39	1	91.548,4
42,86	2,3	0,9	71222,05	1	49.143,2
42,86		0,9	35269,55	1	51.634,6
45,3	2,44	0,9	37662,42	1	27.568,9
			•	Summe PD	1.072.140,2

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 71 von 84

Tabelle 9-12: Ermittlung der charakteristischen lateralen Pfahltragfähigkeit MD1

Tiefe Unter Baggerlinie	Segment Länge Li	Cyclische Faktoren	Lateraler Widerstand	P-Faktor	Laterale Tragfähigkeit Pro Segment
		Α	Pu	pf	PD=p*Li*pf
[m]	[m]	[-]	[kN/m]	[-]	[kN]
0	1,85	0,0167	0,00	1	0,0
1,85	1,0)	0,14	26,20	1	2,3
1,85	2.0	0,1577	56,29	1	17,2
4,75	2,9	0,362	402,95	1	141,0
4,75	,	0,3788	623,01	1	472,0
7,75	3	0,59	1947,02	1	1.148,7
7,75	_	0,607	2875,80	1	6.982,4
13,75	6	0,9	10823,04	1	19.481,5
13,75		0,9	14329,33	1	77.378,4
22,75	9	0,9	34592,72	1	93.400,3
22,75	6	0,9	31670,17	1	114.012,6
28,75	б	0,9	47758,44	1	85.965,2
28,75	_	0,9	59254,59	1	177.763,8
33,75	5	0,9	77506,76	1	116.260,1
33,75	42.22	0,9	51121,08	1	405.492,4
46,97	13,22	0,9	81496,39	1	323.214,7
46,97	1,33	0,9	40079,95	1	31.983,8
48,3		0,9	41385,72	1	16.512,9
				Summe PD	1.470.229,3

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 72 von 84

Tabelle 9-13: Ermittlung der charakteristischen lateralen Pfahltragfähigkeit MD2

Tiefe Unter Baggerlinie	Segment Länge	Cyclische Faktoren	Lateraler Widerstand	P-Faktor	Laterale Tragfähigkeit Pro Segment
	Li	А	Pu	pf	PD=p*Li*pf
[m]	[m]	[-]	[kN/m]	[-]	[kN]
0	1,11	0,0167	0,00	1	0,0
1,11		0,08	8,64	1	0,3
1,11	1,9	0,101	12,74	1	1,6
3,01		0,229	78,55	1	11,4
3,01	3,2	0,246	155,86	1	81,8
6,21		0,4733	765,85	1	386,6
6,21	4,8	0,49	6713,34	1	10.526,5
11,01		0,839	20972,61	1	28.153,6
11,01	8,2	0,8559	7919,76	1	37.055,9
19,21		0,9	21566,55	1	53.053,7
19,21	14	0,9	23731,20	1	199.342,1
33,21		0,9	63079,92	1	264.935,7
33,21	2,5	0,9	64831,66	1	97.247,5
35,71		0,9	72991,04	1	54.743,3
35,71	9,34	0,9	52977,52	1	296.886,0
45,05		0,9	74065,34	1	207.531,1
45,05	3,25	0,9	37827,29	1	73.763,2
48,3		0,9	41385,72	1	40.351,1
	•			Summe PD	1.364.071,4

IMDCT Seconnect	RACTEBEL EXCELERATE ENERGY	Struktur		0	TES engie
TES Proj. Nr.: TES-WI	HV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr 2003.10	: TES-WHV-VGN-FSRU-ST-DOC -
TES Code: TES-WHV-	VGN-FSRU			Seite	73 von 84

Tabelle 9-14: Ermittlung der charakteristischen lateralen Pfahltragfähigkeit MD3

Tiefe Unter Baggerlinie	Segment Länge	Cyclische Faktoren	Lateraler Widerstand	P-Faktor	Laterale Tragfähigkeit Pro Segment
	Li	Α	Pu	pf	PD=p*Li*pf
[m]	[m]	[-]	[kN/m]	[-]	[kN]
0	4.45	0,016	0,00	1	0,0
1,15	1,15	0,0876	9,32	1	0,3
1,15	266	0,104	13,58	1	2,5
3,81	2,66	0,29	136,96	1	35,2
3,81	_	0,307	264,09	1	270,3
8,81	5	0,671	1873,34	1	2.095,0
8,81	_	0,688	3219,63	1	13.290,6
17,81	9	0,9	13501,69	1	36.454,6
17,81		0,9	15046,52	1	57.778,6
24,21	6,4	0,9	25115,91	1	48.222,5
24,21	45.4	0,9	30189,89	1	219.178,6
36,31	12,1	0,9	56222,83	1	204.088,9
36,31	0 =	0,9	54833,23	1	279.649,5
44,81	8,5	0,9	74034,74	1	188.788,6
44,81	244	0,9	78995,72	1	101.430,5
46,95	2,14	0,9	83551,05	1	53.639,8
46,95	4.25	0,9	40056,44	1	32.445,7
48,3	1,35	0,9	41385,72	1	16.761,2
				Summe PD	1.254.132,4

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 74 von 84

Tabelle 9-15: Ermittlung der charakteristischen lateralen Pfahltragfähigkeit MD4

Tiefe Unter Baggerlinie	Segment Länge	Cyclische Faktoren	Lateraler Widerstand	P-Faktor	Laterale Tragfähigkeit Pro Segment
	Li	А	Pu	pf	PD=p*Li*pf
[m]	[m]	[-]	[kN/m]	[-]	[kN]
О	0.74	0,0167	0,00	1	0,0
0,74	0,74	0,056	7,57	1	0,1
0,74	4.40	0,073	6,34	1	0,5
2,23	1,49	0,169	39,72	1	3,3
2,23	2.05	0,1867	49,10	1	18,0
5,18	2,95	0,3948	283,45	1	110,0
5,18	6,9	0,411	610,38	1	1.154,0
12,08		0,9	4884,86	1	10.111,7
12,08	6,52	0,9	5232,41	1	20.469,2
18,6		0,9	10386,74	1	20.316,5
18,6	7.00	0,9	15939,53	1	76.318,5
26,58	7,98	0,9	29067,50	1	69.587,6
26,58	2.0	0,9	23703,11	1	39.821,2
29,38	2,8	0,9	27897,42	1	23.433,8
29,38	10.6	0,9	38343,48	1	243.864,5
39,98	10,6	0,9	61371,77	1	195.162,2
39,98	5.04	0,9	62455,67	1	188.865,9
45,02	5,04	0,9	73695,81	1	111.428,1
45,02	2.20	0,9	37792,16	1	74.375,0
48,3	3,28	0,9	41385,72	1	40.723,5
				Summe PD	1.115.763,7

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 75 von 84

Tabelle 9-16: Ermittlung der I charakteristischen ateralen Pfahltragfähigkeit MD5

Tiefe Unter Baggerlinie	Segment Länge	Cyclische Faktoren	Lateraler Widerstand	P-Faktor	Laterale Tragfähigkeit Pro Segment
	Li	A	Pu	pf	PD=p*Li*pf
[m]	[m]	[-]	[kN/m]	[-]	[kN]
О	0.0	0,016	0,00	1	0,0
0,9	0,9	0,0686	11,53	1	0,2
0,9	2 9-	0,0853	8,80	1	1,9
4,77	3,87	0,3635	232,22	1	108,9
4,77	_	0,38	487,34	1	617,3
9,77	5	0,7447	2746,28	1	3.408,6
9,77	10	0,7614	4013,80	1	20.374,0
19,77	10	0,9	15491,68	1	46.475,0
19,77	8	0,9	19469,21	1	93.452,2
27,77	0	0,9	34035,10	1	81.684,2
27,77	_	0,9	35889,74	1	150.736,9
34,77	7	0,9	50629,11	1	106.321,1
34,77	7.6	0,9	49536,08	1	225.884,5
42,37	7,6	0,9	66311,09	1	151.189,3
42,37	5.00	0,9	98760,13	1	351.388,5
48,3	5,93	0,9	156321,90	1	278.096,7
	1.509.739,5				

ECONNECT EXCELERATE ENERGY	- I		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 76 von 84

Tabelle 9-17: Ermittlung der charakteristischen lateralen Pfahltragfähigkeit MD6

Tiefe Unter Baggerlinie	Segment Länge	Cyclische Faktoren	Lateraler Widerstand	P-Faktor	Laterale Tragfähigkeit Pro Segment
	Li	Α	Pu	pf	PD=p*Li*pf
[m]	[m]	[-]	[kN/m]	[-]	[kN]
О	0	0,016	0,00	1	0,0
0,7	0,7	0,053	6,72	1	0,1
0,7	4.22	0,07	5,79	1	0,3
1,93	1,23	0,147	28,78	1	1,7
1,93		0,1638	36,60	1	13,6
5,33	3,4	0,406	303,80	1	139,8
5,33	_	0,423	789,20	1	2.003,0
14,33	9	0,9	7975,93	1	21.535,0
14,33		0,9	12430,70	1	126.793,1
31,33	17	0,9	44683,00	1	227.883,3
31,33	2.0	0,9	34685,98	1	58.272,4
34,13	2,8	0,9	39677,95	1	33.329,5
34,13	<i>C</i> =	0,9	48891,04	1	196.542,0
40,83	6,7	0,9	63623,51	1	127.883,3
40,83	7.4	0,9	89475,66	1	381.166,3
47,93	7,1	0,9	117263,40	1	249.771,0
47,93	0.37	0,9	41209,13	1	9.148,4
48,3	0,37	0,9	41385,72	1	4.593,8
				Summe PD	1.439.076,7

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 77 von 84

9.3.4 SLS-Verformungen

Wie in Kapitel beschrieben, werden die verschiedenen horizontalen SLS-Verformungen ausgewertet:

- am Pfahlfuß bei 59,5 m SKN
- am Meeresboden
- an Pfahlkopf bei +11,0 m SKN,

Zusätzlich wird hier auch die vertikale Verformung am Pfahlfuß ausgegeben.

9.3.4.1 Horizontalse SLS-Verformung am Pfahlfuß

Die folgende Tabelle liefert eine Übersicht der horizontalen Verformung am Pfahlfuß bei -59,5 m SKN. Alle ermittelten Verformungen am Pfahlfuß sind so gering (max 0,5 mm), nicht nur für den "unendlich langen" Pfahl, sondern auch für den Bemessungspfahl, sodass der Vergleich von beiden hier als nicht sinnvoll erachtet wird.

Tabelle 9-18: Zusammenfassung der horizontalen SLS-Verformung am Pfahlfuß

Dalbenpfahl	Auslesestelle (für unendlich langen Pfahl und Bemessungspfahl) [m SKN]	Horizontale SLS Verformung am unendlich langen Pfahl [cm]	Horizontale SLS Verformung am Bemessungspfahl [cm]	Vergleich/ Abweichung
BD1	-59,5	0,014	0,045	224%
BD2	-59,5	0,012	0,048	294%
BD3	-59,5	0,011	0,048	346%
BD4	-59,5	0,014	0,044	205%
MD1	-59,5	0,004	0,005	30%
MD2	-59,5	0,004	0,007	61%
MD3	-59,5	0,007	0,020	175%
MD4	-59,5	0,007	0,021	184%
MD5	-59,5	0,003	0,007	114%
MD6	-59,5	0,004	0,008	92%

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 78 von 84

9.3.4.2 Horizontalse SLS-Verformung am Meeresboden

Die folgende Tabelle liefert eine Übersicht der horizontalen Verformung am Meeresboden (bei -14,2 m SKN für BDs und bei -11,2 m SKN für MDs).

Aus dieser Tabelle geht hervor, dass alle ermittelten SLS-Verformungen am Meeresboden kleiner als 10 cm und somit als gering einzustufen sind. Der Vergleich dieser Verformungen mit denen am "unendlich langen" Pfahl zeigt vernachlässigbare Abweichungen von maximal 0,1 %. Deswegen wird die Verformung am Meeresboden als zulässig und unkritisch beachtet.

Tabelle 9-19: Zusammenfassung der horizontalen SLS-Verformung am Meeresboden

Dalbenpfahl	Auslesestelle (für unendlich langen Pfahl und Bemessungspfahl) [m SKN]	Horizontale SLS Verformung am unendlich langen Pfahl [cm]	Horizontale SLS Verformung am Bemessungspfahl [cm]	Vergleich / Abweichung
BD1	-14,20	8,14	8,14	0,0%
BD2	-14,20	9,24	9,25	0,1%
BD3	-14,20	8,82	8,82	0,0%
BD4	-14,20	8,70	8,71	0,1%
MD1	-11,20	4,93	4,94	0,1%
MD2	-11,20	5,15	5,16	0,1%
MD3	-11,20	6,30	6,31	0,1%
MD4	-11,20	5,99	6,00	0,1%
MD5	-11,20	5,89	5,89	0,0%
MD6	-11,20	5,71	5,72	0,1%

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 79 von 84

9.3.4.3 Horizontalse SLS-Verformung am Pfahlkopf

Die folgende Tabelle liefert eine Übersicht der horizontalen Verformung am Pfahlkopf bei +11,0 m SKN.

Aus dieser Tabelle geht hervor, dass alle ermittelten Verformungen am Pfahlkopf geringer sind als die bisher im Plattform- und Brücken-Design betrachten maximalen Betriebsverformungen von 50 cm. Das SLS-Kriterium ist somit für alle Pfähle eingehalten. Die maximale Auslastung diese SLS -Kriteriums von Auslenkung am Pfahlkopf < 50 cm tritt für Pfahl BD 2 auf und resultiert zu 83%.

Tabelle 9-20: Zusammenfassung der horizontalen SLS-Verformung am Pfahlkopf

Dalbenpfahl	Auslesestelle [m SKN]	Erlaubte Pfahl- verformung [cm]	Horizontale SLS Verformung am Bemessungspfahl [cm]	Auslastung
BD1	11,00	50,0	39,0	78%
BD2	11,00	50,0	41,5	83%
BD3	11,00	50,0	40,4	81%
BD4	11,00	50,0	40,2	80%
MD1	11,00	50,0	23,8	48%
MD2	11,00	50,0	24,3	49%
MD3	11,00	50,0	26,9	54%
MD4	11,00	50,0	24,9	50%
MD5	11,00	50,0	24,6	49%
MD6	11,00	50,0	24,6	49%

9.3.4.4 Vertikale SLS-Verformung am Pfahlfuß

Die folgende Tabelle liefert zusätzlich eine Übersicht der vertikalen Verformung am Pfahlfuß bei -59,5 m SKN. Die maximale Verformung von 7 mm tritt für BD2 auf und ist trotz des konservativen Nachweises vernachlässigbar klein.

Tabelle 9-21: Zusammenfassung der vertikalen SLS-Verformung am Pfahlfuß

Dalbenpfahl	Auslesestelle [m SKN]	Vertikale Verformung [cm]
BD1	-59,5	0,66
BD2	-59,5	0,69
BD3	-59,5	0,66
BD4	-59,5	0,58
MD1	-59,5	0,48
MD2	-59,5	0,55
MD3	-59,5	0,52
MD4	-59,5	0,60
MD5	-59,5	0,56
MD6	-59,5	0,54

ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 80 von 84

9.3.5 Innere strukturelle Pfahltragfähigkeit

Im Folgenden werden die Auslastungen der inneren Pfahltragfähigkeiten infolge Spannungsauslastungen pro Pfahl dargestellt.

Alle maximalen Spannungsauslastungen liegen unter 100% und somit im zulässigen Bereich.

Die Auslastung ist hauptsächlich durch das maximale Pfahlbiegemoment beeinflusst, das je nach Pfahl und Bodenschichtung bei ca. 9 bis 13 m unter Meeresboden auftritt.

Der Anteil der Axialspannung im Pfahl infolge der Axialendruckkraft hat mit ca. 2-3 % einen unwesentlichen Anteil an der Gesamtauslastung.

Die maximale Spannungsauslastung von 99% tritt für den Pfahl BD1 bei -12, 7 m unter Meeresboden (= -26,7 m SNK) auf. Aufgrund der Vielzahl an eingehenden Konservativitäten bei der Lastaufbringung und Kombination sowie bei den Methoden wird diese relativ hohe Auslastung als unkritisch erachtet.

Tabelle 9-22: Zusammenfassung der ULS-Spannungsauslastungen

Dalbenpfahl	Maximale Spannungsauslastung unter Meeresboden	Position der maximalen Auslastung [m unter Meeresboden]
BD1	99%	12,7
BD2	98%	12,7
BD3	98%	12,2
BD4	97%	12,2
MD1	68%	9,0
MD2	67%	8,5
MD3	69%	10,0
MD4	66%	9,2
MD5	66%	9,7
MD6	66%	9,1

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 81 von 84

Für den maßgebenden Pfahl BD1 wird zusätzlich der Auslastungsverlauf über die Einbindetiefe in der folgenden Abbildung dargestellt.

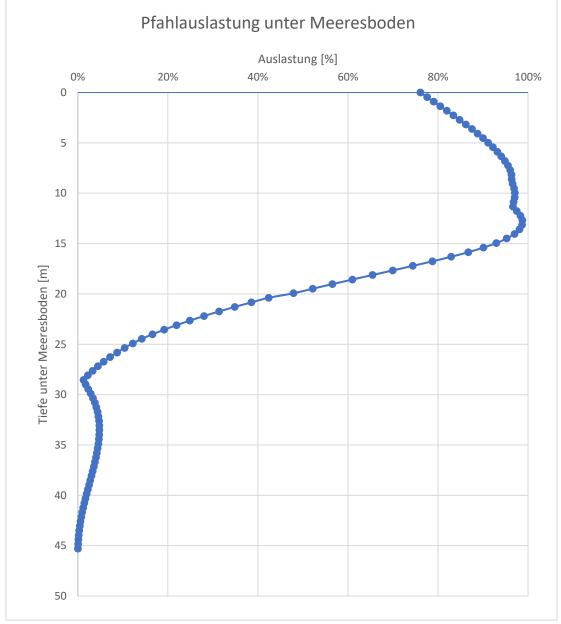


Figure 9-2: Spannungsauslastung über Tiefe für BD1

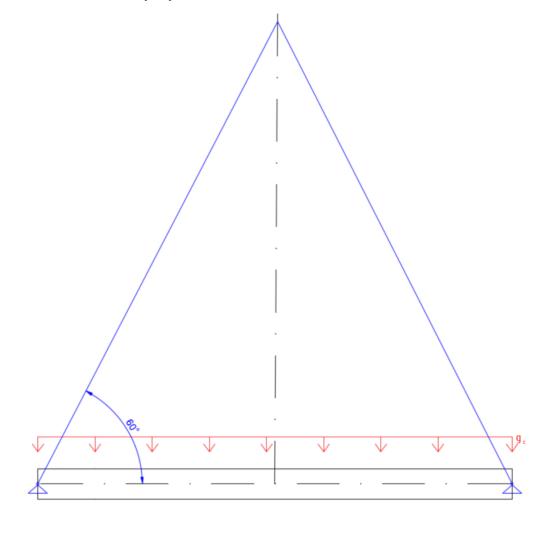
ECONNECT EXCELERATE ENERGY	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 82 von 84

10 ULS-Pfahlnachweis für den Einhebezustand

10.1 Allgemeine Beschreibung der Hebe-Analyse

Die Pfähle sind mit einem Kran aus ihrer horizontalen Position von der Barge in eine vertikale Position zu heben. Der initiale Hebevorgang des horizontalen Pfahls wird als maßgebend erachtet und hiernachgewiesen.

Lokale Nachweise sind nicht im Arbeitsumfang von OV enthalten.


Ein bestimmter Hebevorgang mit einem Haken und 2 Schlingen wird hier berücksichtigt.

10.2 Statisches System

Der horizontale Startzugang mit der maximalen Pfahllänge als freie Biegelänge von L = 70,5 m und Lagerung ganz an den Enden wird hier maßgebend berücksichtigt.

Im Folgenden wird das statische Ersatzsystem dargestellt. Konservativ wird ein Seilwinkel von α =60° zur Horizontalen berücksichtigt. Für den Pfahl mit D = 4500 mm und t = 60 mm ergeben sich folgenden Querschnittswerte:

Fläche: A = 8.369 cm²
 Widerstandsmoment: W = 928.982 cm³

IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Struktur		OTES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 83 von 84

Figure 10-1: Statisches Ersatzsystem Heben

10.3 Lasten und Lastfaktoren

Als Einwirkung wird nur das faktorisierte Eigengewicht g mit Faktoren (f_{ULS} und f_{SLS}) wie in Kapitel 7.6 erläutert, betrachtet.

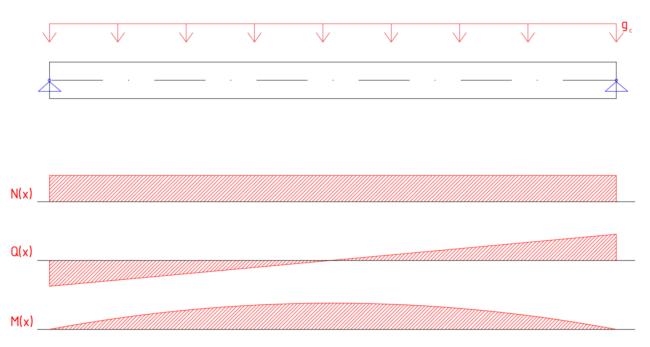


Figure 10-2: Kräfte und Moment

Das Eigengewicht für zu den folgenden maximalen Schnittkräften und Momenten:

• Max. Normalkraft: $N_d = f_{ULS} * m_{pfahl} * g / 2 * 1 / tan(\alpha)$

 $N_d = 2,38 *463 t * 9,81 m/s^2 /2 * 1/tan(60°)$

 $N_d = 3.122 \text{ kN}$

• Max. Querkraft: $Q_d = f_{ULS} * m_{pfahl} * g/2$

Qd = 2,38 *463 t* 9,81 m/s²/2

 $Q_d = 5.407 \text{ kN}$

• Max. Biegemoment: $M_d = f_{ULS} * m_{pfahl} * g L/8$

 $M_d = 2,38 *463 t* 9,81 m/s^2 *70,5 m/8$

 $M_d = 95.299 \text{ kNm}$

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur		TES engie
TES Proj. Nr.: TES-WHV-VGN	Statische Pfahlfundamente	Berechnung	Doc. Nr: TES-WHV-VGN-FSRU-ST-DOC - 2003.10
TES Code: TES-WHV-VGN-FSRU			Seite 84 von 84

10.4 Spannungsergebnisse

Die oben angegebenen maximalen Schnittkräfte und -momente führen zu den folgenden Spannungen:

• Schubspannung: $\tau_{S,d} = 2*Q_d / A$

 $\tau_{S,d} = 13 \text{ MPa}$ < $\tau_{R,d} = \tau_R = f_{y,k} / (\sqrt{3} * \gamma_M) = 193 \text{ MPa}$

• Axialspannung: $\sigma_{S,d} = N_d / A + M_d / W$

 $\sigma_{S,d} = 106,3 \text{ MPa}$ < $\sigma_{R,d} = f_{y,k} / \gamma_M = 335 \text{ MPa}$

• Vergleichsspannung: $\sigma_{v,S,d} = \sqrt{(\sigma_{S,d}^2 + 3 * \tau_{S,d}^2)}$

 $\sigma_{S,d}$ = 108,6 MPa $\sigma_{R,d}$ = $f_{y,k}/\gamma_M$ = 335 MPa

Aus der Gegenüberstellung aller Spannungen kann erkannt werden, dass alle auftretenden Spannungen $\sigma_{S,d}$ deutlich geringer sind als die maximal zulässigen Spannungen $\sigma_{R,d}$. Die maximale Spannungsauslastung für die Vergleichsspannung ermittelt sich zu 32%.

10.5 Verformungsergebnisse

Die maximale SLS-Durchbiegung in der Mitte des Pfahls ermittelt sich zu:

• Durchbiegung: $w = f_{SLS} * m_{pfahl} * g * L^3 / (76,8 EI) = 84 mm$

