Stabilität von Sohlgleiten in Riegelbauweise (quaderförmiges Steinmaterial)

DWA Naturnahe Sohlgleiten (2009)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zeichen</th>
<th>Wert 1</th>
<th>Wert 2</th>
<th>Wert 3</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASTFALL</td>
<td></td>
<td>Q40</td>
<td>Q315</td>
<td>HQ100</td>
<td></td>
</tr>
<tr>
<td>Abfluss gesamt</td>
<td>Q.ges</td>
<td>0.3600</td>
<td>0.8430</td>
<td>22.7670</td>
<td>[m³/s]</td>
</tr>
<tr>
<td>Abflussbreite</td>
<td>bs.S</td>
<td>7.5000</td>
<td>8.5000</td>
<td>7.5000</td>
<td>[m]</td>
</tr>
<tr>
<td>spez. Abfluss</td>
<td>q.ges</td>
<td>0.0480</td>
<td>0.0990</td>
<td>3.0360</td>
<td>[m³/s/m]</td>
</tr>
</tbody>
</table>

PARAMETER DER SOHLGLEITE

<table>
<thead>
<tr>
<th>Schlufgefälle</th>
<th>I.R.So</th>
<th>0.0240</th>
<th>0.0240</th>
<th>0.0450</th>
<th>[m/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.02 < I.R < 0.10</td>
<td>1/41.4940</td>
<td>1/41.4940</td>
<td>22.0000</td>
<td>[m/m]</td>
</tr>
</tbody>
</table>

Bezeichnung nach ABERLE (2000) für Sohlgleiten mit Gefälle 1:50 < I.R < 1:10

| Äquivalenter Steindurchm. d.s | 0.0220 | 0.0350 | 0.5390 | [m] |

Riegelsteine

Steinhöhe h.Rstein =	1.20	1.20	1.20	[m]
Steinbreite b.Rstein =	1.00	1.00	1.00	[m]
Steinlänge l.Rstein =	1.00	1.00	1.00	[m]
Volumenfaktor f.vol =	0.90	0.90	0.90	[]
Sicherheitsbeiwert f.s =	1.00	1.00	1.00	[]
Steinsolumen V.Rstein =	1.08	1.08	1.08	[m³]
Steindurchmesser d.Stein =	1.28	1.28	1.28	[m]
Dichte Riegelstein g.Rstein =	2300	2300	2300	[kg/m³]
Steingewicht G.Rstein =	2484	2484	2484	[kg]

Sohlsteine

Steinhöhe h.Sstein =	0.60	0.60	0.60	[m]
Steinbreite b.Sstein =	0.60	0.60	0.60	[m]
Steinlänge l.Sstein =	0.60	0.60	0.60	[m]
Volumenfaktor f.vol =	0.90	0.90	0.90	[]
Sicherheitsbeiwert f.s =	1.00	1.00	1.00	[]
Steinsolumen V.Sstein =	0.19	0.19	0.19	[m³]
Steindurchmesser d.Stein =	0.73	0.73	0.73	[m]
Dichte Riegelstein g.So =	2300	2300	2300	[kg/m³]
Steingewicht G.Stein =	447	447	447	[kg]

System

Systemlänge l.s =	3.90	3.90	3.90	[m]
Beckenlänge l.b.vorh =	2.90	2.90	2.90	[m]
Nachweis	1.00	1.00	1.00	[]

Nachweis

<p>| mittl. Steindurchmesser d.m | 0.7810 | 0.7810 | 0.7810 | [m] |
| Nachweis: d.m >= d.s | JA | JA | JA |</p>
<table>
<thead>
<tr>
<th>LASTFALL</th>
<th>Q40</th>
<th>Q315</th>
<th>HQ100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abfluss gesamt</td>
<td>Q.ges</td>
<td>0.360</td>
<td>0.843</td>
</tr>
<tr>
<td>Abflussbreite</td>
<td>bs.S</td>
<td>7.500</td>
<td>7.500</td>
</tr>
<tr>
<td>spez. Abfluss</td>
<td>q.ges</td>
<td>0.048</td>
<td>0.112</td>
</tr>
<tr>
<td>Wassertiefe</td>
<td>h.W</td>
<td>0.062</td>
<td>0.109</td>
</tr>
<tr>
<td>Abflussgeschwindigkeit</td>
<td>v</td>
<td>0.776</td>
<td>1.031</td>
</tr>
<tr>
<td>Abflussgeschwindigkeit</td>
<td>v</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Abflussgeschwindigkeit</td>
<td>v</td>
<td>0.776</td>
<td>1.031</td>
</tr>
</tbody>
</table>

Abmessungen

<table>
<thead>
<tr>
<th>Steingeometrie</th>
<th>Bild 6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breite</td>
<td>b.s</td>
</tr>
<tr>
<td>Tiefe</td>
<td>t.s</td>
</tr>
<tr>
<td>Höhe</td>
<td>h.s</td>
</tr>
<tr>
<td>Einbindetiefe</td>
<td>h.s.P</td>
</tr>
<tr>
<td>Breitenfaktor</td>
<td>f.b.red</td>
</tr>
<tr>
<td>Breite, reduziert</td>
<td>b.red</td>
</tr>
<tr>
<td>Steinvolumen</td>
<td>V.s</td>
</tr>
<tr>
<td>Dichte Riegelstein</td>
<td>gam.R</td>
</tr>
</tbody>
</table>

Strömungsbedingungen

angespülte Fläche	As	0.900	1.200	0.600
Widerstandsbeiwert	cw	2.500	3.500	1.500 [-]
Anströmgeschwindigkeit	va	1.164	1.546	4.649 [m/s]
Strömungskraft	P	1524	5021	9727 [N]
Hebelarm	L.P	0.67	0.70	0.60 [m]
Gewichtskraft	G	17640	17640	17640 [N]
Hebelarm	L.G	0.50	0.50	0.50 [m]

Nachweis

\[(G \times L.G) > (P \times L.P)\]

<table>
<thead>
<tr>
<th></th>
<th>Q40</th>
<th>Q315</th>
<th>HQ100</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA</td>
<td>8.684</td>
<td>2.510</td>
<td>1.511 [-]</td>
</tr>
<tr>
<td>JA</td>
<td>JA</td>
<td>JA</td>
<td>JA</td>
</tr>
</tbody>
</table>