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ve variability in the tidal basins of the German Wadden Sea is modelled with
combined numerical and neural-network (NN) methods. First, the wave propagation and transformation in
the study area are modelled with the state-of-the-art third-generation spectral wave model SWAN. The
ability of SWAN to accurately reproduce the phenomena of interest in nonstationary conditions governed by
highly variable winds, water levels and currents is shown by comparisons of the modelled and measured
meanwave parameters at four stations. The principal component analysis of the SWAN results is then used to
reveal the dominating spatial patterns in the data and to reduce their dimensionality, thus enabling an
efficient and relatively straightforward NN modelling of mean wave parameters in the whole study area. It is
shown that the data produced with the approach developed in this work have statistical properties (discrete
probability distributions of the mean wave parameters etc.) very close to the properties of the data obtained
with SWAN, thus proving that this approach can be used as a reliable tool for wind wave simulation in coastal
areas, complementary to (often computationally demanding) spectral wave models.
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1. Introduction
The knowledge concerning the short- and medium-term varia-
bility of waves and currents is an important prerequisite for the
studies of many important aspects of the coastal zone processes, e.g.
for the analysis of sediment transport or the safety assessment of
coastal protection structures and the coast itself. A prerequisite for
such investigations is the availability of a sufficient amount of data
spanning time periods important for the processes under study. The
work presented here is part of a research project MOSES (“Modelling
of the medium-term wave climatology at the German North Sea
coast”), one of the purposes of which is to produce a medium-term
(~40 years) database of water levels, currents and mean wave
parameters for a coastal area in the German Wadden Sea. Although
nowadays the state-of-the-art hydrodynamic and wave models are
able to reproduce thewave and current processes in shallow tidal seas
with high accuracy, their application with sufficiently high temporal
and spatial resolution over longer periods of time still requires
substantial computer resources. Thus, computationally cheap and
effective alternatives to this kind of modelling—like the technique
described in this work—are still of practical use and have many
advantages in practical applications. Also, an important aspect is the
,
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proper reduction of the amount of data without loss of information
crucial for the understanding of the processes involved—an approach
known as ‘input reduction’ in morphodynamic studies, see e.g. Latteux
(1995) or a review paper by de Vriend et al. (1993).

The hydrodynamic modelling in the study area is described in
detail in Herman et al. (2007). In the present study the results of high-
resolution wind-wave simulations are used as a starting point for the
development of a neural-network-based modelling system, which
enables fast and accurate prediction of temporal and spatial patterns
of significant wave height (HS), energy period (Te≡T−1,0) and mean
wave direction (θm) in the study area—a set of parameters used e.g. in
studies concerning designwave conditions or the safety of the coastal
zone (see Appendix A.1 for the definitions of these parameters). The
main idea behind the approach developed is to decompose the dataset
into a (small) number of fixed modes, assumed ‘universal’ over the
four decades studied, and tomodel the time evolution of these modes,
thus reducing the dimensionality of the problem by more than three
orders of magnitude. The results presented in this paper show that the
assumption of the decadal ‘time-universality’ of the modes is justified,
provided they are determined from data covering a sufficiently long
period of time (in this case, 2 years).

The usage of artificial neural networks (NNs) in oceanic and
atmospheric applications has increased rapidly in recent years. A
broad review of various aspects of these methods, their possibilities
and limitations is given in Cherkassky et al. (2006) in their paper
introducing a special issue of the Neural Networks journal devoted
to these problems. One important group of applications of NNs in
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oceanic and atmospheric simulations are the so-called hybrid models,
in which some—usually computationally most expensive—parts of the
code are replaced with a trained NN, enabling accurate and in some
cases a few orders of magnitudemore efficient estimation of modelled
quantities or processes. Krasnopolsky and Chevallier (2003) discuss
examples of hybrid models, the most interesting from the point of
view of the issues discussed here being the Neural Network
Interaction Approximation (NNIA; see also Tolman et al., 2005), a
NN-based algorithm designed to replace the Discrete Interaction
Approximation (DIA) of the nonlinear four–four wave interactions in
spectral wave models. Another class of approaches represents neural
networks applied directly to predict the time series of wave
parameters at the location of interest (usually nearshore) from the
times series of other available data (usually off-shore), e.g. from
satellite measurements (Kalra et al., 2005), wave buoy measurements
(Tsai et al., 2002; Makarynskyy, 2005; Makarynskyy et al., 2005b),
large-scale modelling results (Browne et al., 2006) or wind data (Deo
et al., 2001; Rao and Mandal, 2005). The NN technique has also been
used for forecasting future values of wave parameters at a given
location based on the measured values of those parameters (see e.g.
Deo and Naidu, 1999; Makarynskyy, 2004; Londhe and Panchang,
2006; Makarynskyy and Makarynska, 2007), for the interpolation of
themissing values (Makarynskyy et al., 2005a), for studies concerning
the interdependency of various wave parameters (Agrawal and Deo,
2004; Deo et al., 2002) and to improve the accuracy of the results
obtained with a numerical wave model (Makarynskyy, 2005; Zhang
et al., 2006).

Contrary to the works listed above, the approach used here,
combining the data reduction and pattern recognition with NN
techniques, enables to reproduce the mean wave parameters in the
whole study area, not only at single locations as in the cited papers.
The results presented here indicate that the linear principal
Fig.1. Location of the study area on the German North Sea coast. Continuous line: boundary o
area, in which the results are analyzed and modelled with NNs; numbered dots: locations
location of an input point for the wind atlas and the NN modelling (see text for detailed de
component analysis (PCA; see e.g. Preisendorfer, 1988; Jolliffe, 2002)
of the modelling results is a promising input-reduction tool e.g. for
morphodynamic and other studies, for which the knowledge of the
temporal and spatial variation of wave processes is a prerequisite. The
ideas of combining PCA with NNs are similar to those used e.g. in van
der Merwe et al. (2007) or Tolman et al. (2005). The same technique
has been used successfully by Herman et al. (2007) tomodel thewater
levels and currents in the German Wadden Sea.

The structure of the paper is as follows: in Section 2 a brief
description of the study area is given, followed in Section 3 by the
description of the set-up of the third-generation spectral wave model
SWAN (Simulating WAves Nearshore) used in the simulations. The
verification of the results is presented as well. Section 4 discusses the
results of the PCA of Hs, Te and θm, with emphasis given to aspects
crucial for the further stages of the project realization. The results of
PCA, together with the time series of water level, wind velocity
components and wave parameters in a chosen location, are then used
to set up and train a feed-forward NN, as described in detail in Section
5. The trained NN is shown to accurately reproduce the test data and
hence to be applicable as a tool for producing the data in periods that
could not be modelled with SWAN because of time constraints. The
role of wind and tidal processes in shaping the wave climate in the
study area is analyzed in Section 6. Finally, Section 7 summarizes and
discusses the results.

2. Area description

The main object of the study are the catchment areas of the tidal
inlets between the islands of Borkum, Juist and Norderney, belonging
to the chain of the East Frisian Islands separating the GermanWadden
Sea from the North Sea. The location of the study area, together with
its bottom topography, is shown in Fig. 1. Fig. 2 shows a detailed view
f the Delft3D grid; dashed line: boundary of the SWAN grid; dotted line: boundary of the
in which the statistical distribution of wave parameters is analyzed (Section 5); a star:
scription).
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Fig. 2. Bathymetry (in meters relative to the German datum) of the tidal inlet Norderneyer Seegat and its catchment area and location of the measurement stations used for the
verification of the modelling results.

Table 1
Some of the numerical parameters of the SWAN set-up (Booij et al., 1999, 2004).

Parameter Value/formulation Other values tested

Time step (min) 10 5, 20, 30
Max. No. of iterations 2 1,3
No. of frequencies 41 34
Frequency range (Hz) 0.04–1.00 0.04–0.6
No. of directions 36 –

Propagation scheme BSBT –
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of the tidal inlet Norderneyer Seegat, the main area of interest within
the MOSES project. The mean tidal range in the study area (within the
dashed line in Fig. 1) varies from 2.3 m to 2.7 m. According to the
classification of Hayes (1979) the region is subject to upper mesotidal
conditions. Details of the hydrodynamic processes in the study area
were investigated recently by Herman (2007) and Herman et al.
(2007).

The long-term mean Hs and Te at the open boundary of the model
equal 1.1–1.2 m and 5.5–5.6 s, respectively (values calculated from the
data used as input in this study, see next section). Seawards from the
islands the wave conditions are determined primarily by the larger-
scale situation in the North Sea, which is in turn shaped by mesoscale
atmospheric pressure and wind fields over the North Sea region. With
mid-latitude low pressure systems typically traveling to the north of
the German coast, during storm events the analyzed coast section
experiences strong north-westerly and northerly winds, resulting in
very rough sea states directly at the coast of the islands. Due to high
water levels by storm events (storm surges of over 2.5 m were
recorded in the harbour of Norderney; the surges at the mainland
coast can be even 50 cm higher) the waves can penetrate through the
tidal inlets into the Wadden Sea, where their interaction with the
bottom is the dominating process in shaping the wave field. On the
contrary, by typical calm or moderate weather conditions the local
wind and water level (and thus the phase of the tidal cycle) play a
dominant role.

3. Model set-up and verification

As mentioned in the introduction, the work presented here is part
of a larger project, the main purpose of which was to produce a
medium-term (1962–2002) database of water level, current and wave
data for the area of interest. As described in detail in Herman et al.
(2007) the hydrodynamic modelling was done by means of the two-
dimensional version of the Delft3D model (Delft Hydraulics, 2003),
set up on a curvilinear grid larger than the grid for the wave model
(thick continuous line in Fig. 1). The wave modelling, which is the
main subject of this paper, was performed with the parallel version
40.41AB of the third generation spectral wave model SWAN (Booij et
al., 1999, 2004). The curvilinear orthogonal wave-model grid has
spatial resolution varying from ~30 m in the tidal inlet between Juist
and Norderney, called Norderneyer Seegat (themain area of interest in
theMOSESproject), to ~200mat the north–westmodel boundary (see
Fig. 1). The bottom topography was compiled from various data
sources, collected during a number of measuring campaigns in dif-
ferent years. In Section 7 we discuss briefly the possible influence of
using constant bathymetry on the modelling results.

In the nonstationary mode of SWAN there are two important
parameters governing the time increment: the time step Δt and the
maximal number of iterations per time step nt. The tests performed
for Δt in the range 5–30 min with 1, 2 or 3 iterations per time step
showed that ΔtN10min required large nt values to properly propagate
the changes at the open boundary through the model grid. On the
other hand, ntN2 resulted in a sequence of stationary wave fields
fitted to the instant conditions, which is unrealistic in situations with
rapid changes of the forcing. Two sets of parameters gave highly
accurate and comparable results: Δt=5 min with nt=1 and
Δt=10 min with nt=2. For the reasons of computational economy
the second version was used in the final model set-up (in over 40% of
the time the model went over to the next time step after just one
iteration). In the spectral domain 36 directions and 41 logarithmically
distributed frequencies ranging from0.04 Hz to 1.0 Hzwere used, with
an analytical diagnostic tail above the cut-off frequency. All source
terms—wave generation by wind, dissipation due to whitecapping,
bottom friction and depth-induced breaking, and nonlinear quad-
ruplet and triad wave–wave interactions—were activated. Some
details concerning the SWAN set-up are provided in Table 1. The
choice of many of the model parameters was based on the earlier
studies in the Norderneyer Seegat area (e.g. Kaiser and Niemeyer,
1999, 2001; Niemeyer and Kaiser, 2001).
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Table 2
SWAN performance at the four DWRmeasurement stations in the study area in autumn
2002.

SEE VST1 SGT-NEY RIFFGAT

Buoy operation period 01.09–30.11 01.09–12.09,
17.09–09.10

01.10–30.11 01.10–30.11

No. of data points 1405 504 875 600
Mean water depth (m) 12.7 6.0 7.0 6.6

Hs (0.04–0.6 Hz)
Mean measured value (m) 1.02 0.66 0.25 0.13
Mean modelled value (m) 1.07 0.55 0.29 0.18
Std. dev. of diff. (m) 0.58 0.32 0.15 0.11
Mean diff. (meas.-mod.; m) 0.01 0.11 −0.04 −0.05

Te (0.04–0.6 Hz)
Mean measured value (s) 5.53 5.76 3.46 3.22
Mean modelled value (s) 4.58 3.91 2.89 2.25
Std. dev. of diff. (s) 1.17 1.42 0.82 0.26
Mean diff. (meas.-mod.; s) 0.95 1.86 0.56 0.13
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The model was driven by:

• 3-hourly time series of the 2D wave energy spectra from the
database produced within the European Union Project HIPOCAS
(Weisse et al., 2002)—results of the large-scale North Sea simu-
lations with theWAMmodel (Günther et al., 1992); the spectrawere
interpolated onto the model boundary from a regular grid with
spatial resolution 0.1°×0.05° (~5.5 km in each direction);

• hourly wind fields interpolated from the wind atlas of the German
Weather Service (DWD);

• hourly water level and current fields calculated with Delft3D
(Herman et al., 2007), linearly interpolated onto the SWAN grid.

The wind atlas, produced within MOSES and designed to fit its
purposes, contains high resolution unidirectional wind fields for a
number of wind speed, wind direction and water level classes. The
wind fields were calculated by means of a wind model in which
variations of the surface friction due to drying/flooding of the
tidal flats and due to changes in the sea state (estimated by a simple
statistical wave model) were taken into account. As an input for
the wind atlas the time series of the HIPOCAS water level and wind
speed and direction in location marked with a star in Fig. 1 were
used.

The ability of SWAN run in a stationary mode to reproduce the
transformation of wave energy in shallow tidal areas has been proved
in a number of earlier studies, see e.g. Ris (1997), Ris et al. (1999),
Kaiser and Niemeyer (1999, 2001), Niemeyer and Kaiser (2001). Here
we test the ability of the model to accurately simulate both the
temporal and spatial variability of waves in the study area subject to
highly nonuniform, time-varying forcing. In a test period Sep.–Nov.
Fig. 3. Relationships between measured Hs and Te a
2002 the SWAN results are compared with measured Hs and Te at four
stations in the neighbourhood of the island of Norderney, shown in
Fig. 2. At all stations the measurements were performed with the
Datawell Directional Waverider (DWR) buoys in periods listed in
Table 2. The raw data files, saved hourly, contain 1536 data samples
each, collected during 20-minute periods of data acquisition. From
those time series the wave energy spectra were calculated for the
frequency range 0.025–0.58 Hz, with resolution Δf=0.005 Hz within
the 0.025–0.1 Hz range and Δf=0.01 Hz within the 0.11–0.58 Hz
range. The scatter plots of measured Hs and Te at all four stations are
shown in Fig. 3. One strong wind event took place in the analyzed
period (end of October), with Hs up to 6 m at the station SEE and up to
1 m at the sheltered station RIFFGAT to the south of the island. Also, a
calm period with low-amplitude swell coming from the North Sea
took place (the second week of October), particularly visible at the
station VST1. The remaining part of the three months analyzed was
dominated by weak to moderate winds fromvarious directions. At the
station RIFFGAT numerous measurements with very low Hs and very
high Te values were made (Fig. 3d), corresponding always to low
water independently of wind conditions and thus suggesting some
disturbances in the recorded time series—or, at least, the manifesta-
tion of processes that cannot be accounted for in the SWAN model.
Thus, the data points with measured Hs values lower than 0.1 mwere
excluded from the statistical analysis of the modelling results.

Examples of measured andmodelled time series of Hs and Te at the
station SGT-NEY and RIFFGAT are shown in Fig. 4. In the case of the
modelled values, two ‘versions’ of He and Te are shown: calculated
based on the energy from the whole range of frequencies (0.04–
1.0 Hz) with the high-frequency tail taken into account and from the
narrower range of frequencies cut at 0.6 Hz to allow the direct com-
parison with the measured data. The influence of the high-frequency
energy on the Hs and Te values at the stations SEE and VST1, located
seawards from the island, is negligible (not shown), but at the
sheltered stations SGT-NEY and RIFFGAT (Fig. 4) the differences are
significant, especially in the case of the wave periods: the strong
underestimation of periods—a known and often discussed problem in
the SWAN model, see e.g. Ris (1997)—is largely reduced, especially in
periods with low significant wave heights. The amplitudes of the tidal
fluctuations of Hs and Te calculated from the spectra with frequencies
cut at 0.6 Hz correspond well to the measured amplitudes (e.g. days
37–43 in Fig. 4).

The above statements are not meant to suggest that the problem of
underestimation of wave periods in SWAN, reported by many authors
and related to the formulation of the source terms in the model, is not
present in the area studied. The results simply call the attention to the
importance of the usage of consistent spectral frequency ranges
when calculating the mean wave parameters for purposes of the
model evaluation, especially at shallow, sheltered locations. That the
underestimation of wave periods still persists if the frequency range
t the four analyzed stations in Sep.–Nov. 2002.
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Fig. 4. Time series of measured and modelled Hs (a,c) and Te (b,d) at the station SGT-NEY (a,b) and RIFFGAT (c,d) in October 2002.
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0.04–0.6 Hz is considered can be seen from Table 2, summarizing the
overall performance of SWAN at the four analyzed stations. The small
values of bias of the significant wave heights at the stations SGT-NEY
and RIFFGAT suggest that the amount of wave energy modelled by
SWAN is consistent with measurements. The bias of energy periods
shows that this energy is differently distributed among the frequen-
cies: SWAN tends to underestimate the low frequency energy and to
overestimate the high frequency energy.

The overall conclusion from the data presented in Fig. 4 and in
Table 2 is that the modelling system built within the MOSES project—
the configured SWAN model together with the input data—is capable
of reliably reproducing the wave variability in the study area. The
accuracy of the results lies well within the accuracy achievable with
the state-of-the-art spectral wave models. Also, it must be remem-
bered that what is important for the present study is the performance
of the PCA/NN technique given the wave model results, as described
further.

In the following the results from the first two years of the analyzed
period (1962–1963) are used to develop a statistical model (based on
PCA and NN) of the wave processes in the study area—similarly as in
Herman et al. (2007) for water levels and currents. The performance
of the trained NNs is then tested by comparing their predictions
with the SWAN results from the year 1985, chosen based on the
analysis of the wind and water level data: the distributions of the
wind speeds and water levels at the model boundary in the year 1985
were very similar to those obtained for the whole analysis period
1962–2002.
4. PCA of the mean wave parameters

4.1. General remarks

The modelled fields of Hs, Te and θm from the first two years of the
period of study (1962–1963), saved hourly, were analyzed inside the
area marked with a dotted line in Fig. 1. Every 7th grid point in each
direction was taken into account, resulting in Np×Nt-point data
matrices of Hs, Te and θm, where Np=3463 is the number of data
points (only those points, which remained wet during at least 10% of
the simulation time were taken into account) and Nt=17521 is the
number of time points (hourly from 01.01.1962, 00:00 to 01.01.1964,
00:00). The reason for the reduction of the spatial resolution of the
datasets prior to the PCAwas pragmatic—to obtainmanageablematrix
sizes—but justified by an observation that the mesh resolution neces-
sary to properly account for the influence of the bottom topography on
the wave propagation in SWAN was much higher than the desired
resolution of the data produced within MOSES. The sensitiveness of
the PCA results to changes of the data resolution was thoroughly
tested; no significant influence neither on the spatial structure of the
leading modes nor on the percentage of the total variance they
describe (changes b1%) could be noticed. Of course, in general it is the
planned further application of the data that decides whether the
reduction of the number of points is necessary and allowable.

The meanwave propagation directions were analyzed as vectors rm
of unit length pointing in the direction θm: rm=cosθm+ i sin θm, where
i =

ffiffiffiffiffiffiffiffi
−1

p
is the imaginary unit. However, because the quantity of
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interest in the further analysis were not the vectors rm as a whole, but
their direction θm, all statistical parameters describing the modelling
performance were calculated for θm, not for rm. All exception values in
the analyzed datasets, corresponding to negative water depths, have
been replaced with zeros. The following naming convention is used in
this work: the time-invariant spatial patterns, denoted with MHs ;n xð Þ,
MTe ;n xð Þ,Mθm ;n xð Þ, are termed ‘modes’. The time series describing their
time evolution, denoted with PHs ;n tð Þ, PTe ;n tð Þ, Pθm ;n tð Þ, are called
‘principal components’ (PCs). In the notation above x is a vector of
locations of length Np, t is a time vector of length Nt and n=1,…, Np.

4.2. Basic properties of the modes

The percentage of variance described by the ten most energetic
mode/PC pairs ofHs, Te and θm is shown in Table 3. A striking feature of
the PCA results is the high amount of variance contained in the leading
modes of Te, θm and, especially,Hs. The spatial structure of thesemodes
is shown in Fig. 5. ThefirstHsmode,MHs ;1 (Fig. 5a) reflects an ‘average’
wave height distribution in the study area, with highest values along
the open boundary, gradually decreasing towards the shore and
further to the tidal flats. A characteristic feature (present in MHs ;2 as
well, see Fig. 5b) is that the contours over the ebb delta of the
Norderneyer Seegat—a region of the highest Hs gradients—correspond
very well to the contours of the bottom topography (Fig. 2). The
distribution of variance described by the first two leading modes of Hs

is not spatially uniform (not shown), e.g.MHs ;1 accounts for over 97%
of the variance seawards from Juist and Norderney, 60–80% in the
deep tidal channels and less than 50% over the tidal flats. To the
contrary, MHs ;2, ‘responsible’ for 3.35% of the total variance, describes
over 40% of the variance at shallow locations. The behaviour of the
modes of Te and θm is similar: MTe ;1 and Mθm ;1 account primarily for
the variance to the north of the islands, while the further modes have
their centers of action at the shallow locations in the Wadden Sea.
Also, the spatial small-scale variability of the modes increases
substantially with increasing n. A detailed analysis of PHs ;n, PTe ;n and
Pθm ;n will be performed further in Section 6, together with the
discussion on the role of wind and tides upon wave variability in the
study area.

4.3. PCA reconstruction of the SWAN data

In all three cases (Hs, Te, θm) N=5 first mode/PC-pairs were used
in the further analysis and in the NN modelling. Although the amount
of variance reproduced with five leading PCs is different in the case of
Hs (98.9%), Te (92.6%) and θm (85.9%), the inclusion of the further
components led in neither of the three cases to a noticeable
improvement of the performance of the NN modelling: a very
irregular time variation of the further PCs, which are significant only
locally (almost exclusively in locations falling dry at low water),
makes the training of neural networks prohibitively difficult and in
some cases leads even to the deterioration of the quality of the results.
Table 3
Percentage of total variance described by the first ten linear modes of Hs, Te and θm.

Mode Hs Te θm

Separate Cumulative Separate Cumulative Separate Cumulative

1. 93.96 93.96 77.81 77.81 70.59 70.59
2. 3.35 97.30 10.92 88.73 9.73 80.32
3. 0.87 98.17 1.51 90.24 2.55 82.87
4. 0.47 98.64 1.28 91.52 1.95 84.83
5. 0.26 98.90 1.05 92.57 1.05 85.87
6. 0.18 99.08 0.70 93.27 0.85 86.72
7. 0.16 99.25 0.57 93.84 0.69 87.41
8. 0.09 99.34 0.45 94.29 0.58 87.99
9. 0.08 99.42 0.41 94.70 0.52 88.51
10. 0.07 99.48 0.34 95.04 0.47 88.98
The spatial distribution of the percentage of variance δvar
reconstructed with the five leading PCs and of the standard deviation
of differences σstd between the original and the reconstructed data is
shown in Fig. 6. Not surprisingly the quality of the reconstructed data
is highest in the region seawards from the islands, where the
variability of the wave conditions is relatively small. The δvar values
are very high especially in the area surrounding the ebb delta of the
Norderneyer Seegat (where the concentration of data points was
highest; hence the high ‘weight’ of those points in the PCA results):
over 95% for all three analyzed quantities, with σstd in the range 4–
5 cm for Hs (Fig. 6b), 0.2–0.3 s for Te (Fig. 6d) and ~20° for θm (Fig. 6f).
Over the shallows south from the islands the picture is more com-
plicated, with small amplitude fluctuations of δvar and σstd. Generally,
the quality of the reconstructed data is worst over the tidal flats and in
points located directly at the coast—to a high degree due to long
periods of zero values in the time series, which for obvious reasons
cannot be approximated accurately with periodically time-varying
PCs.

5. Neural network modelling

5.1. Configuration of the NNs

The NN architecture used here is themulti-layer perceptron (MLP),
consisting of two layers of weights providing full connection from the
input units to the hidden units and from the hidden units to the output
units. Thus, it is a so-called two-layer feed-forward networkwith error
gradient backpropagation as a learning procedure. Basics of NNs can
be found in a number of textbooks and will not be discussed here. The
same type of neural networks were used e.g. by Tsai et al. (2002),
Makarynskyy (2004), Kalra et al. (2005), Makarynskyy et al. (2005b)
and many others. All simulations presented further were performed
with the NETLAB package of MATLAB scripts developed by Nabney
(2004). Some of the most important parameters of the MLP used in
this study are: hyperbolic-tangent activation function of the hidden
layer, linear activation function of the output layer (most appropriate
choice for nonlinear regression problems) and a conjugate gradient
optimization algorithm, see Nabney (2004) for details. Other optimi-
zation algorithms (scaled conjugate gradient and quasi-Newton), as
well as other network architectures (three-layer MLPs with and
without direct connections from the input layer to the output layer
and the Elman networks) were tested, but gave worse results and/or
made the training difficult and time consuming. They are therefore not
considered further.

For each of the parameters Hs, Te and θm an ensemble of 50 neural
networks with a different number Ni and different combinations of
input neurons was set up. The initial ‘full’ set of input neurons
considered was:

Hs;HIP
ftð Þ; Te;HIP ftð Þ; θm;HIP

ftð Þ; nHIP ftð Þ;uw
ftð Þ; vw ftð Þ;uw tð Þ; vw tð Þ

h i
;

where Hs,HIP, Te,HIP, θm,HIP and ξHIP denote the HIPOCAS significant
wave height, energy period, mean wave direction and water level
in the input point (a star in Fig. 1), t denotes time, t̃=[t−3Δt,t−2Δt,
t−Δt,t], Δt=1 h, [uw, vw] is the HIPOCAS wind velocity vector in the
input point and [u ̅w, v ̅w] is the average of [uw, vw] over t̃. Thus, a
maximal value of Ni considered was 26. As a selection criterion for the
final network from each ensemble the global statistics were examined,
i.e. the correlation coefficients r and the standard deviation of
differences σstd obtained for the test data (see below). Each network
was assigned ranks in terms of its r and σstd values. It turned out that
among the ten best networks from each ensemble their r and σstd

ranks did never differ bymore than two positions. An inspection of the
Hinton diagrams of these best networks, together with a pairwise
comparison of the results obtained with networks differing by one
input neuron, revealed that some input parameters (e.g. uw(t−3Δt),
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Fig. 5. The PCA results of Hs, Te and θm: MHs ;1 (a), MHs ;2 (b), MTe ;1 (c), MTe ;2 (d), Mθm ;1 (e) and Mθm ;2 (f).

765A. Herman et al. / Coastal Engineering 56 (2009) 759–772
vw(t−3Δt)) had almost no influence on the network performance.
Elimination of networks containing these parameters as input
resulted in 4, 7 and 5 remaining ensemble members for Hs, Te and
θm, respectively. The relative performance differences of these NNs
(within each ensemble) in terms of r lied within 0.2%, and could be
classified as insignificant. Hence, it was decided to choose the final



Fig. 6. Quality of the PCA reconstruction of Hs (a,b), Te (c,d) and θm (e,f) with five leading PC/mode pairs: spatial distribution of the percentage of the reconstructed variance δvar (a,c,
e) and of the standard deviation of differences σstd (b: in cm; d: in seconds; f: in degrees).
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Table 4
Statistical parameters describing the NN performance for the Hs, Te and θm test datasets
Jul.–Dec.1963.

PCHs,1 PCHs,2 PCHs,3 PCHs,4 PCHs,5

Corr. coef. (%) 99.49 98.97 96.37 88.10 95.01
σstd (–) 0.111 0.141 0.266 0.461 0.299
Mean difference (–) 0.007 0.000 0.001 0.025 0.006

PCTe,1 PCTe,2 PCTe,3 PCTe,4 PCTe,5

Corr. coef. (%) 98.04 98.94 93.50 98.66 95.55
σstd (–) 0.200 0.147 0.371 0.164 0.305
Mean difference (–) −0.020 0.014 −0.034 −0.007 0.029

θ(PCrm,1) θ(PCrm,2) θ(PCrm,3) θ(PCrm,4) θ(PCrm,5)

Corr. coef. (%) 99.35 98.23 97.78 98.15 96.38
σstd (degr) 14.02 20.11 22.52 20.55 29.59
Mean difference (degr) 0.18 0.92 0.22 0.97 0.28
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networks so that the differences in input vectors between the
ensembles were minimal. Thus, the input vectors were set to:

Hs;HIP
ft
� �

; Te;HIP tð Þ; θm;HIP tð Þ; nHIP
ft
� �

;uw tð Þ; vw tð Þ;uw tð Þ; vw tð Þ
h i

;

Hs;HIP tð Þ; Te;HIP
ft
� �

; θm;HIP tð Þ; nHIP
ft
� �

;uw tð Þ; vw tð Þ;uw tð Þ; vw tð Þ
h i

and:

Hs;HIP tð Þ; Te;HIP tð Þ; θm;HIP
ft
� �

; nHIP
ft
� �

;uw tð Þ; vw tð Þ;uw tð Þ; vw tð Þ
h i

for the Hs, Te and θm network, respectively, resulting in Ni=14. It is a
noteworthy fact that all three wave parameters can be modelled with
similar sets of input variables.
Fig. 7. Scatter plots of the original (horizontal axis) and the NN-reconstructed (vertical a
The necessary number of hidden units Nh was established by
means of sensitivity tests with Nh varied from 50 to 150 with a step of
10. In the range 50–80 a strong performance improvement (again in
terms of r and σstd values) could be noticed; for Nh≥90 the relative
differences of r and σstd remained within the 0.3% and 0.6%, respec-
tively. Thus, Nh=90 was finally chosen. The output of the networks
was PHs ;n tð Þ� �

n=1; N ;5, PTe ;n tð Þ� �
n=1; N ;5 and Pθm ;n tð Þ� �

n=1; N ;5, respec-
tively, resulting in No=5 of output units in the case of Hs and Te and
No=10 in the case of θm. Similarly as in the case of the water levels
and currents (Herman et al., 2007) the dataset 1962–1963was divided
into the training data (Jan. 1962–Jun. 1963) and the validation data
(Jul.–Dec. 1963).
5.2. Reconstruction of the PCs

The first two PCs of Hs, describing over 97.3% of the total variance
(Table 3), are reconstructed very precisely with the NN, with the
correlation coefficient r of 99.49% and 98.97% and with σstd of 0.11 and
0.14, respectively (Table 4). The scatter plots for PHs ;n tð Þ� �

n=1; N ;5 are
shown in Fig. 7a. The quality of the reconstruction is worst in the case
of PHs ;4 (correlation coefficient of 88.10% and σstd of 0.46), especially
in situations in which this PC reaches high values. It must be stressed,
however, that PHs ;3 − PHs ;5 together describe only 1.6% of the total
variance, so that their reconstruction errors have a significantly
smaller influence on the overall quality of the NNmodelling—a notion
valid for the PCs of Te and θm as well.

If the two most energetic PCs are concerned, the results of the NN
modelling are worst in the case of Te (Fig. 7b): although r exceeds 98%
(98.04% for PTe ;1 and 98.94% for PTe ;2, see Table 4), the scatter of the
xis) five leading PCs of Hs (a), T), Te (b) and θm (c) in the test period Jul.–Dec. 1963.
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Table 5
NN modelling performance in points 1–4 (Fig. 1) in the year 1985.

Point 1 2 3 4

Hs

Corr. coefficient (%) 98.9 98.1 96.5 96.4
σstd (m) 0.11 0.09 0.05 0.04
Mean diff. (SWAN-NN; m) 0.04 0.06 0.00 0.00

Te
Corr. coefficient (%) 93.3 93.0 84.8 72.5
σstd (s) 0.47 0.59 0.32 0.28
Mean diff. (SWAN-NN; s) 0.18 0.35 0.06 −0.01

θm
Corr. coefficient (%) 80.9 80.0 81.5 86.3
σstd (degr) 41.3 42.1 57.1 46.4
Mean diff. (SWAN-NN; degr) 2.6 0.7 −5.8 −2.6
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points is relatively strong, with the values of σstd 0.20 and 0.15,
respectively.

Obviously in the case of θm, the NN performance has been
evaluated not for the Pθm ;n vectors directly, but for their directions
θ Pθm ;n
� �

measured in degrees, as shown in Table 4 and Fig. 7c.
Fig. 8. Spatial distribution of the 90th percentile p90 of Hs (a; in m) and Te (c; in s) calculate
(in %) between p90 calculated based on the SWAN- and the NN-modelled Hs (b) and Te (d)
5.3. Reconstruction of the data from the year 1985

The performance of the NN modelling of the mean wave
parameters in the study area can be evaluated in many different
ways, depending on the further application of the modelling results.
From the point of view of the goals of the MOSES project, one of the
most important aspects concerns the ability of the NN model to
accurately reproduce those statistical properties of the wave field,
which are particularly important for morphodynamic studies and
safety assessment of the coastal zone, e.g. the distribution curves of
Hs, Te and θm in various parts of the study area. The discrete probability
density of these parameters was calculated for a number of locations
both in theWadden Sea and in the open sea region. The results for four
chosen points, representing the whole range of wave conditions and
marked with numbered dots in Fig. 1, are shown in the Supplementary
Figs. 1 and 2. Table 5 summarizes the basic statistical parameters for
Hs, Te and θm at all four locations.

Although the shape of the probability density curves varies
strongly from point to point, the NN was able to reproduce this
variability with a high accuracy, not only in the points located
seawards from the islands, but in the sheltered, dry-falling points
(locations 3 and 4) as well. In the case of the energy periods, a small
d from the SWAN results from the year 1985. Right panels show the relative difference
.
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bias in the NN results can be observed, especially at the location 2
(Supplementary Fig. 1f), which lies in the region of very strong Te
gradients at the edge of the ebb delta of the Norderneyer Seegat
(Fig. 1).

The quality of the NN results—measured in terms of the ability to
reproduce the statistical distributions of the analyzed parameters—is
worst for the wave directions (Table 5). At locations seawards from
the islands (points 1 and 2), where the wave directions concentrate
around a single dominating one, the NN is able to reproduce this
pattern, but gives too broad distributions (Supplementary Fig. 2a,b).
In the Wadden Sea, where no dominating direction can be identified
and the distribution of the wave propagating directions strongly
resembles the distribution of wind directions (an effect of a local
wind-wave generation), the NN results agree only approximately with
the SWAN results (Supplementary Fig. 2c,d).

Finally, as another measure of the quality of the NN modelling, the
spatial distribution of the 90th percentile of Hs and Te, p90,Hs

and p90,Te,
obtained from the SWAN and the NN results, are compared in Fig. 8.
Although the NN tends to slightly underestimate both p90,Hs

and p90,Te
values (positive relative differences in Fig. 8b,d), especially in the
north-western part of the study area and along its northern boundary,
the agreement between the results of the SWAN and the NN
modelling is very good, especially in the main area of interest—the
Norderneyer Seegat and its surroundings.

6. Wind-wave variability in the study area

The wind-wave variability in the study area is strongly dependent
on the wind and the tides (i.e. changing water levels and currents)
governing the local wave generation and propagation as well as the
wave conditions at the open boundary of the region. These
phenomena were studied thoroughly in (Herman et al., 2007); here
Fig. 9. Fragments of the three leading PCs of Hs (a), T), Te (b) and θm (c). Thick continuous line
series of Hs, Te and θm, with the time means removed, are shown with dotted curves. In (c)
we repeat the most important conclusions from that study. If the
HIPOCAS hourly data is concerned, no statistically significant trends
are present neither in the water level nor in the wind data. However,
an increasing occurrence frequency of strong wind events in the cold
time of the year can be noticed, manifesting itself in positive winter
trends in seasonally averaged wind speeds. A very interesting feature
is the existence of a ‘dominant’ wind-direction axis (approx. WNW–

ESE) governing the non-tidal part of the water level and current
variability in the study area. In the case of the wind-wave parameters
this dominance is less pronounced (although present), but for the
sake of consistency we are going to express the wind velocity vector
components in the same way, as [uw, vw], with uw along the WNW–

ESE axis and vw in the perpendicular direction.
Before we proceed to a more detailed analysis it is useful to

examine the basic properties of the PCs. Fragments of PHs ;n, PTe ;n and
Pθm ;n (for n=1,2,3) are shown in Fig. 9, together with the
corresponding time series of the HIPOCAS data from the input point.
As can be seen, the first PCs closely follow the HIPOCAS time series.
Although some tidal modulation is present, especially in Pθm ;1, they
reflect mainly the general wave conditions, e.g. the magnitude of PHs ;1

and PTe ;1 is highest during strong wind events (e.g. hours 110–160 in
Fig. 9a,b)—which is not surprising if one considers that the spatial
structure ofMHs ;1 andMTe ;1 (Fig. 5a,c) closely resembles the Hs and Te
distribution at high wind speeds. To the contrary, the second PCs are
‘responsible’ mainly for the tidal modulation of the mean wave
parameters. Interestingly, the variance of PTe ;2 is lower in periods of
high amplitude of PTe ;1, indicating the dominance of wind over the
tidal processes.

To get a further insight into the properties of the PCs, and thus to
investigate the relationships between the wind, the tidal forcing and
the wave conditions, we follow a similar approach as the one used by
(Herman et al., 2007). Thus, by means of the T_TIDE package of
: first PC, thin continuous line: second PC, thin dashed line: third PC. The HIPOCAS time
the directions of Pθm ;n (n=1,2,3) instead of the PCs themselves are shown.
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Table 6
Variance of PHs ;n;t , PTe ;n;t and Pθm ;n;t in percent of PHs ;n , PTe ;n and Pθm ;n , respectively.

PC1 PC2 PC3 PC4 PC5 HIPOCAS

Hs 0.4 69.6 8.3 4.8 32.9 5.0
Te 2.1 81.7 12.3 31.6 24.3 5.8
θm 1.4 57.0 17.6 37.7 16.3 3.6

In the last column the percentage of variance of the tidal part of the HIPOCAS time series
is shown.
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Pawlowicz et al. (2002) each of the PCs of Hs, Te and θm is decomposed
into a tidal and a residual part:

PHs;n
= PHs ;n;t

+ PHs;n;r
; PTe ;n

= PTe ;n;t
+ PTe ;n;r

; Pθm ;n = Pθm ;n;t + Pθm ;n;r

for n=1,…, 5. In the harmonic analysis of the PCs the 25 most
energetic tidal components were used. In the same way the
decomposition of the HIPOCAS time series from the input point is
performed, resulting in:

Hs;HIP = Hs;HIP;t + Hs;HIP;r; Te;HIP = Te;HIP;t + Te;HIP;r;

and so on. The percentage of variance of the tidal components of the
analyzed series (in % of the original series) is listed in Table 6. The
variance distribution confirms the general conclusions drawn based
on Fig. 9. In view of these properties of the modes and PCs it is not
surprising that certain relationships between the considered quan-
tities exist, as shown in Fig. 10. In the case of PHs ;1 and PTe ;1, a strong
dependence on Hs,HIP and Te,HIP is present, although its exact form
depends on the sign of the wind component uw (black and gray
Fig. 10. Scatter plots of the chosen PCs against the HIPOCAS time series: Hs;HIP − PHs ;1 (a), Te
In the upper panels (a,b,c) data points for uwN5 m/s (uwb−5 m/s) are shown with black (
show the linear least-square fit.
crosses in Fig. 10a,b). The values of Pθm ;1 are concentrated around two
bins, corresponding to the negative and positive uw and clearly
defined ranges of the HIPOCAS mean wave directions (Fig. 10c). If the
second PCs are considered, their ‘tidal’ character is responsible for a
strong (and almost linear, with an exception of the highest values)
correlation with ξHIP (Fig. 10d–f).

Finally, it is worth noticing that, although no trends in the hourly
PCs can be identified in the 40 years studied, the seasonally averaged
time series reveal an analogous variability to the one present in the
wind data, as discussed in Herman et al. (2007): the wintertime PHs ;1

and PTe ;1 exhibit a strong positive trend, contrary to the insignificant
trend in the summertime PHs ;1 and PTe ;1 (Fig. 11). Similar positive
trends can be found in wintertime maximum values—an important
phenomenon e.g. from the point of view of the safety of the coastal
protection structures in the study area. A more detailed analysis of
these issues, concentrated on the extreme events, their course and
occurrence frequency, will be presented elsewhere.

7. Discussion

The combination of the third-generation spectral wind-wave
modelling with the NN/PCA technique, described in this paper, has
been shown to provide an effective alternative to the ‘classical’
modelling approaches. An important aspect of this technique is its
applicability to other similar regions. First tests performed for other
areas at the German coast (unpublished) suggest that e.g. the same
neural network structure and the same sets of input parameters are
suitable for the NN simulation there—provided that the size of the
modelled area is small enough so that the meteorological and tidal
forcing is highly spatially correlated and can be represented by time
;HIP − PTe ;1 (b), θm;HIP − Pθm ;1 (c), nHIP − PHs ;2 (d), nHIP − PTe ;2 (e) and nHIP − Pθm ;2 (f).
gray) crosses; the remaining points (|uw|≤5 m/s) are marked with dots. Lines in (d,e)
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Fig. 11. Trends in the summer- (June–August) and wintertime (December–February) average values of PHs ;1 (a) and PTe ;1 (b).
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series in one chosen location. This is an important aspect of the
proposed technique. In search of possible methods that could further
improve the quality of the NN-modelling results, we tested a
possibility of using the data from two HIPOCAS input points instead
of only one. Without changing the structure of the neural networks,
time series of water levels andwave parameters from a HIPOCAS point
located in the north-west part of the model domain were used as
additional input neurons. Only very minor changes in the results were
observed. For example, in the case of the PCs of Hs, the correlation
coefficients improved by less than 0.2% and the standard deviation of
differences by less than 0.02. This is not surprising after a brief
examination of the input data. The wave conditions to the north of the
islands are highly uniform. If a one-hour phase shift is taken into
account, the correlation between the Hs and Te in the two points
considered equal 0.95 and 0.97, respectively. In the case of water levels
the correlation is even higher, namely 0.996. Generally, to make the
technique presented here applicable to regions with more nonuni-
form forcing, PCA of the forcing variables could be used to represent
them as a few PCs used then as input for the neural networks.

Another issue worth some discussion—and one of the possible
sources of errors in the modelling scheme described in this paper—is
the fact that the constant bottom topographywas used throughout the
whole 1962–2002 period, as already mentioned in Section 3. It must
be stressed that at the time scales analyzed here the outer parts of the
ebb deltas are the only regions that can undergo substantial
morphological changes. However, the amount of bathymetric data
available is insufficient to properly account for these variability in the
four decades studied, especially in the first part of this period.
Sensitivity studies based on the bathymetric survey data from the
years 1960 and 1995 (Kaiser and Niemeyer, 1999) show that the
influence of the morphological changes within the ebb delta of the
Norderneyer Seegat are significant under some conditions, but they
are spatially limited. Further studies are necessary to analyze this
issue in more detail. However, it does not affect the methodology
presented in this paper, in the sense that one could treat the bottom
topography as an additional (variable) forcing factor shaping thewave
conditions—analogously to the way in which the meteorological and
tidal forcing are handled.

Finally, the amount of data used for the training and validation of
the neural networks should be commented upon. The performance of
the NNmodelling would be presumably better, especially by extreme/
untypical situations, if longer training and validation time series were
used. However, the amount of computer resources needed by SWAN
made it impossible to produce the required model data in acceptable
time spans. The calculations for the years 1962, 1963 and 1985 took
over 13 months on a 16-processor cluster available for the project
realization. These huge computational resources necessary for high-
resolution spectral wave modelling provide one of the important
arguments in favour of the technique described in this paper.
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Appendix A

A.1. Definitions of the mean wave parameters

The mean wave parameters used in this study, i.e. the significant
wave height Hs, the energy period Te and the meanwave direction θm,
are defined as:
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E ω; θð Þdωdθ
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TeuT−1;0 = 2π
Z ∞

0

Z2π

0

ω−1E ω; θð Þdωdθ
Z ∞

0

Z2π

0

E ω; θð Þdωdθ

2
4

3
5

−1

;

θm = arctan
Z ∞

0

Z2π

0

sin θE ω; θð Þdωdθ
Z ∞

0

Z2π

0

cos θE ω; θð Þdωdθ

2
4

3
5

−10
@

1
A;

where E denotes the spectral energy density, ω—the wave frequency
and θ—the wave propagation direction.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.coastaleng.2009.02.007.
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