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[1] A nonlinear, neural-network-based extension of the
principal component analysis (PCA) is applied to the water
level and current fields in a shallow tidal sea at the German
North Sea coast. Contrary to the linear PCA, which tends to
split patterns in the data among several modes difficult to
interpret, the nonlinear PCA enables to identify the
nonlinear spatial patterns in the data with only a single
mode. The first nonlinear principal component (PC)
corresponds well with the joint probability distribution of
the linear PCs and can be argued to represent a ‘typical’
tidal cycle in the study area. Citation: Herman, A. (2007),

Nonlinear principal component analysis of the tidal dynamics in a

shallow sea, Geophys. Res. Lett., 34, L02608, doi:10.1029/

2006GL027769.

1. Introduction

[2] Medium-term (�decades) variability of water levels
and currents is an important factor influencing many shal-
low water phenomena, including sediment transport pro-
cesses and load on the coastal protection structures.
Exhaustive analysis of this variability over large areas with
complicated topography is possible so far only with high-
resolution numerical models. However, the amount of data
produced by those models is often prohibitively large. In
such cases the further application and interpretation of the
modelling results must be combined with an efficient data
reduction technique. One of the most popular geostatistical
data reduction tools is the principal component analysis
(PCA), in which the analyzed data set is decomposed into a
number of time-invariant spatial modes and corresponding
principal components (PCs), describing the time evolution
of the amplitude of the modes. The strength of PCA lies in
the significant reduction of the dimensionality of the data
without loss of important information. However, applied to
systems with strongly nonlinear behaviour PCA has a
number of obvious drawbacks, the most important of which
is that nonlinearities ‘hidden’ in the data are scattered
among several PCs, making the proper interpretation of
the results and the identifying of the physical patterns
impossible and unnecessarily increasing the number of
PCs required to reproduce the desired amount of variance
of the original data set. Another drawback is the behaviour
of PCA when applied to data sets containing propagating
features, which get similarly scattered among several PCs.

Although the last shortcoming can be partially accounted
for by means of other linear techniques, like e.g. the
complex PCA or the multichannel singular spectrum anal-
ysis, a more natural solution to the above mentioned
problems is a nonlinear extension of PCA (NLPCA) pro-
posed originally by Kramer [1991], the main idea of which
is to relax the requirement that the sought for ‘axes of
concentration’ of the data must be straight lines and to allow
them to form curves (or even, in the case of circular
NLPCA, closed curves) that adjust their shape to optimally
pass through the data clusters. NLPCA has an important
advantage over the linear techniques mentioned above,
which produce linearly independent, but statistically corre-
lated modes. For the theory of NLPCA and its applications
in climate studies, the reader is referred to Hsieh and Tang
[1998], Monahan [2000], Monahan et al. [2001], Rattan
and Hsieh [2004], Hsieh [2001, 2004b], and Rattan et al.
[2005]. Suitability of NLPCA to studies concerning the
medium-term variability of hydrodynamic processes in the
coastal zone is demonstrated below.
[3] The motivation for the NLPC analysis presented in

this study originated in the analysis of the PCA results of
water levels and currents in a shallow, tidal sea (Figure 1).
Although the linear PCs are by definition linearly indepen-
dent and uncorrelated, the joint probability distribution of
the PC-pairs reveals the existence of certain statistical
relationships between them (Figure 2). This suggests the
possibility of describing the analyzed data sets in another,
more appropriate than the linear PCA way.

2. Data and Methods

[4] The study area is located at the German coast and
consists of the catchment areas of the tidal inlets between
three of the East Frisian Islands, separating the Wadden Sea
from the North Sea (Figure 1). The high-resolution hydro-
dynamic modelling in this area, with realistic forcing, has
been performed within a large research project by means of
the 2D version of the Delft3D model [Roelvink and van
Banning, 1994], as described in detail by A. Herman et al.
(A new approach towards modelling of a medium-term
dynamics in a shallow tidal sea, based on combined
physical and neural network methods, submitted to Ocean
Modelling, 2006, hereinafter referred to as Herman et al.,
submitted manuscript, 2006). For the purpose of the present
analysis the simulated water level and current fields from
the years 1962–1963, 1985, and 2002 (detailed statistical
analysis of the input data used for modelling showed that
the probability distribution of the analyzed parameters over
these years is representative for the variability of those
parameters in the four decades studied) have been saved
hourly in Np = 3454 data points (every 5th point of the
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computational grid; only points ‘wet’ at least 10% of
the time have been taken into account), resulting in Np �
Nt-matrices (Nt = 35043), real-valued for water levels (W =
[Wpt]) and complex-valued for currents (V = [Upt] + i[Vpt],
where i is the imaginary unit and U, V are the cartesian
velocity components). All exception values, corresponding
to drying of the tidal flats, have been replaced with the
bottom level in theWmatrix and with zeros in the V matrix.
The distribution of variance of the original data sets among
the five leading linear modes resulting from the PCA is
shown in Table 1. A prevailing part of the variance of both
water levels and currents is represented by the first mode. In
both cases the three leading modes and corresponding PCs
are used in the NLPC analysis presented further—a choice
based on the visual examination of the modes and of the
spatial distribution of the percentage of variance explained
by them. The further modes are very irregular spatially,
have amplitude much lower than the first ones, and are
‘important’ only locally, mainly in points staying dry over
most of the tidal cycle; see also discussion of Herman et al.
(submitted manuscript, 2006). Taking into account the
further modes complicates the whole picture without bring-
ing to light valuable information.
[5] The chosen PCs of water levels and currents are

used as input for the circular NLPCA, performed with the
NLPCA.cir MATLAB package developed by Hsieh
[2004a]. For each of the two analyzed parameters an
ensemble of 20 five-layer autoassociative neural networks
(NNs) has been set up, with 3 hidden neurons in the
encoding and decoding layers and a weight penalty
parameter of 1.0 to avoid overfitting. In the case of
currents the real and imaginary parts of the PCs were
treated separately. Thus, the NNs for water levels and
currents have three and six input/output neurons, respec-
tively. To enforce a closed-curve solution, the constrained
form of the cost function has been used. The member
networks of each ensemble have been trained with various
initial parameters to prove the sensitivity of the networks
to the values of these parameters and to ensure the
repeatability of the results (see Monahan and Fyfe
[2007] for the discussion of the robustness and uniqueness
of the NLPCA results). In both cases over 90% of the
ensemble members gave very similar results, with the cost
function J varying within 10%. From each of the two

ensembles the network resulting in the lowest J value has
been chosen for the final analysis.

3. NLPCA Results

[6] The first nonlinear PCs (NLPCs) of water levels and
currents explain 97.4% and 89.5% of the variance of the
respective data sets. Overlayed onto the diagrams showing

Figure 1. Bottom topography (in m) of the analyzed part
of the German Wadden Sea. Dashed line shows the
boundary of the study area.

Figure 2. Discrete joint probability density (in %; class
width 0.1) of the three leading PCs of (a–b) water levels
and (c–f) currents (real parts, Figures 2c and 2d; imaginary
parts, Figures 2e and 2f), normalized to unit standard
deviation. Overlayed is the first NLPC (black lines). Arrows
show the direction in which the curves are ‘drawn’ during a
tidal cycle.

Table 1. Percentage of Variance Explained by the First Five

Linear Modes of Water Levels and Currents

Mode

Water Levels Currents

Separate Cumulative Separate Cumulative

1 97.177 97.177 84.471 84.471
2 1.803 98.980 7.263 91.734
3 0.638 99.618 1.966 93.699
4 0.144 99.762 1.508 95.208
5 0.052 99.814 0.677 95.885
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the discrete joint probability distribution of the linear PC
pairs (Figure 2), the first NLPCs pass directly through the
regions of the highest data concentration. In both cases the
first NLPC forms a complicated loop in the space spanned
by the linear PCs (arrows in the diagrams in Figure 2 show
the direction in which the curves are ‘plotted’ during a tidal
cycle). The shape of these loops and their asymmetry are a
clear indication that the paths drawn in the phase space
during ebb and flood are very different. A hypothetical
system reacting in the same way on falling and rising water
level would result in NLPCs with overlapping fragments
corresponding to ebb and flood, which is not the case in the
data set analyzed.
[7] Contrary to the results of the linear PCA, NLPCA

gives time-varying modes. The curves drawn by the first
NLPC of water levels and currents can be argued to
represent the course of the ‘typical’ or ‘most probable’ tidal
cycle, with each point on these curves representing the state
of the system—the shape of the water surface and the
current field, respectively—at a given tidal phase. As an
example, four of those states, corresponding to the four
sharp bends of the first NLPC curve of water levels in

Figure 2a, are shown in Figure 3. A proper interpretation of
these plots is possible if one considers that the first linear
PC of water levels depends strongly (with a correlation
coefficient of 99.7%) and almost linearly on the mean water
level in the study area (Herman et al., submitted manuscript,
2006). Thus, with help of Figure 2, it is easy to relate the
contour plots in Figure 3 to high water, ebb, low water and
flood. (Figures 3b and 3d do not correspond to the times of
strongest tidal currents and maximal water level gradients,
but rather to the tidal phases at which the system shifts
direction in the phase space.)
[8] Contrary to the linear modes, which do not resemble

any physically meaningful patterns observable in a real
world, the time series of the first nonlinear modes can be
shown to be both qualitatively and quantitatively in agree-
ment with the observed variability of water levels and
currents in the study area. An animation of the intermediate
states linking the four extremes presented in Figure 3 clearly
illustrates this fact (Animation S1 in the auxiliary material).1

Figure 3. The first nonlinear mode of water levels at the four extremes of the first NLPC of water levels (Figure 2a):
(a) high water, (b) ebb, (c) low water, and (d) flood. Average values, that had been extracted from the data set prior to the
PCA, have been added to the solution to make it represent a ‘typical’ course of water levels during one tidal cycle. Axes
labelling in km. White contours mark the areas lying above water level.

1Auxiliary materials are available in the HTML. doi:10.1029/
2006GL027769.
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The most striking difference between the linear and nonlin-
ear modes concerns the ability to reproduce the propagation
of the tidal wave along the coast and into/out of the tidal
inlets. Whereas it can be directly observed in the NLPC
animation, it cannot be recognized in any of the single PC
modes, in particular not in the first water level mode,
although it represents over 97% of the total variance.
Another one of the most characteristic features of the tidal
regime of the study area—accurately predicted by the first
NLPC—is a relatively steep slope of water surface at high
water: 15–20 cm from the mainland coast to the open sea
(Figure 3a). Apart from the geometry of the tidal inlets, the
prevailing winds have presumably a noticeable influence on
this effect. Also, the first NLPCs correctly predict higher
alongshore (to the north of the islands) water level gradients
and stronger currents by ebb than by flood. The current
asymmetries in the tidal channels are (at least qualitatively)
correctly reproduced by the first NLPC as well.

4. Discussion and Conclusions

[9] The NLPCA has proved to be a useful data analysis
tool in climatology and atmospheric sciences. This study
examines the aspects of NLPCA applied in coastal hydrody-
namics—to the best of the author’s knowledge it is the first
application of this technique to the analysis of the spatial and
temporal variability of water levels and currents in the coastal
zone (Ruessink et al. [2004] applied this technique to study
bathymetry changes and propagation of sand bars nearshore).
The results presented above clearly indicate the suitability of
this tool to problems concerning water circulation, at least—
like in the discussed case—in relatively small areas subject to
strong external forcing, where internal, mainly geometrical
constraints exist that leave only little space for possible ‘ways
of response’ to that forcing. These constraints limit the
possible modes of variability in the system, but at the same
time lead to its strongly nonlinear behaviour, as many studies
concerning the tidal inlet dynamics demonstrate. In the
analyzed case the NLPCA has obvious advantages over its
traditionally used linear counterpart.
[10] From the discussion in the previous section it fol-

lows that the NLPCA results for water levels can be
interpreted in a way analogous to the mean tidal curve
traditionally used in many practical applications. The cru-
cial difference, revealing the power of NLPCA as compared
with other methods, is that instead of a time history of water
level in a single point, spatial and temporal water level
variability in the whole study area is described in a compact
way, indirectly taking into account the whole spectrum of
processes influencing this variability, e.g. prevailing winds.
Of course, although the analogy between the mean tidal

curve and the NLPC may be useful, their very different
basics must be kept in mind. Whereas the first one is an
arithmetic average of a number of tidal cycles in a given
point, the second one should be rather interpreted in a mean-
root-square-error sense, accordingly to the definition of the
cost function used in the neural networks as a measure of
their fitness.
[11] In summary, the analyzed case demonstrates that the

NLPCA can be regarded not only as an interesting way of
looking at the representative hydrodynamic conditions in
the coastal zone, but also as a useful tool, at least comple-
mentary to the linear PCA, helpful by identifying physical
patterns in the data.
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the project MOSES (‘‘Modelling of the medium-term wave climatology at
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of the German Coastal Engineering Research Council (KFKI).
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