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Abstract

The paper presents an approach towards a medium-term (�decades) modelling of water levels and currents in a shallow
tidal sea by means of combined hydrodynamic and neural network models. The two-dimensional version of the hydrody-
namic model Delft3D, forced with realistic water level and wind fields, is used to produce a two-year-database of water
levels and currents in the study area. The linear principal component analysis (PCA) of the results is performed to reveal
dominating spatial patterns in the analyzed dataset and to significantly reduce the dimensionality of the data. It is shown
that only a few principal components (PCs) are necessary to reconstruct the data with high accuracy (over 95% of the
original variance). Feed-forward neural networks are set up and trained to effectively simulate the leading PCs based
on water level and wind speed and direction time series in a single, arbitrarily chosen point in the study area. Assuming
that the spatial modes resulting from the PCA are ‘universally’ applicable to the data from time periods not modelled with
Delft3D, the trained neural networks can be used to very effectively and reliably simulate temporal and spatial variability
of water levels and currents in the study area. The approach is shown to be able to accurately reproduce statistical distri-
bution of water levels and currents in various locations inside the study area and thus can be viewed as a reliable comple-
mentary tool e.g., for computationally expensive hydrodynamic modelling. Finally, a detailed analysis of the leading PCs is
performed to estimate the role of tidal forcing and wind (including its seasonal and annual variability) in shaping the water
level and current climate in the study area.
� 2007 Published by Elsevier Ltd.
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1. Introduction

The investigation of many important aspects of the coastal zone processes – e.g., the analysis of sediment
transport or studies concerning the safety of various coastal protection structures and the coast itself – is
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possible only if data concerning medium-term (�decades) variability of waves and currents in the study area
are available. Because of enormous costs and technical difficulties of long-term measuring campaigns on the
one hand, and typical shortage of input data required by (usually extremely computationally expensive)
numerical models on the other hand, the knowledge of temporal and spatial variability of waves and currents
in the coastal zone is usually very limited.

The work presented in this study is part of a research project MOSES (‘‘Modelling of the medium-term
wave climatology at the German North Sea coast”), one of the purposes of which is to produce a medium-
term database of water levels, currents and mean wave parameters for a coastal area in the German Wadden
Sea. Although the state-of-the-art hydrodynamic and wave models are able to reproduce the wave and current
processes in shallow tidal seas with high accuracy, their application to medium-term modelling is limited
because of enormous computer resources that are required to reach spatial and temporal resolution sufficient
to resolve all details of the complicated geometry of the coastal zone. The methods typically used to address
these problems, e.g., nesting or grids with varying spatial resolution, only in some cases provide a satisfactory
solution. Moreover, the amount of data produced by the models makes their direct usage in further applica-
tions (e.g., as input for morphodynamic modelling) practically impossible. Therefore, even if one is able to
conduct sufficiently long simulations, additional data analysis tools are necessary, enabling the reduction of
the amount of data without loss of information crucial for the understanding of the processes analyzed
and for further application of the modelling results.

In the present study the results of high-resolution hydrodynamic simulations of water levels and currents
(wave modelling in the study area will be treated in detail elsewhere) are used as a starting point for the devel-
opment of a neural network-based modelling system, which enables fast and sufficiently accurate hindcasting
of temporal and spatial patterns of water levels and currents in the study area. The main idea behind the
approach developed is to decompose the dataset into a (small) number of fixed modes, assumed ‘universal’
over the four decades studied, and to model the time variations of those modes only, thus reducing the dimen-
sionality of the problem by more than three orders of magnitude. The results presented in this paper show that
the assumption of the medium-term ‘universality’ of the modes is justified. Contrary to the earlier works con-
cerning neural network modelling of tides, e.g., by Lee and Jeng (2002), Huang et al. (2003) (see also the
review of neural network applications given in this work) or Lee (2004), the approach used here enables to
reproduce water levels and currents in the whole study area, not only at single stations as in the cited papers.
The results presented indicate that the principal component analysis of the results of hydrodynamic modelling
is a promising input-reduction tool e.g., for morphodynamic and other studies (as suggested by de Vriend
et al., 1993), for which the knowledge of the temporal and spatial variation of water levels and currents is
a prerequisite. The idea behind the PCA/NN technique used here is in many aspects similar to the one of
Álvarez et al. (2000), who applied PCA combined with genetic algorithms to forecast the space-time variability
of the satellite-derived monthly sea surface temperature fields in the western Mediterranean Sea. Similarly,
Álvarez (2007) used the combination of the complex PCA (CPCA) and genetic algorithms to the analysis
of propagating thermal fronts.

The structure of the paper is as follows: in the next section a description of the study area is given, followed
in Section 3 by a description of the hydrodynamic model Delft3D used in the simulations. The verification of
the results is presented as well. Section 4 discusses the results of the linear principal component analysis (PCA)
of water levels and currents, with emphasis given to aspects crucial for the further stages of the project real-
ization. The results of PCA, together with time series of water level and wind velocity components in a chosen
location, are then used to set up and train a feed-forward neural network (NN), as described in detail in Sec-
tion 5. The trained NN is shown to accurately reproduce the test data and hence to be applicable as a tool for
producing the data in periods that could not be modelled with Delft3D because of time constraints. In Section
6 the influence of wind and its seasonal and annual variability on the water level and current climate in the
study area is investigated. Finally, Section 7 summarizes and discusses the results.

2. Area description

The main object of the study are the catchment areas of the tidal inlets between the islands of Borkum, Juist
and Norderney, belonging to the chain of the East Frisian Islands separating the German Wadden Sea from
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the North Sea. The location of the study area, together with its bottom topography, is shown in Fig. 1. All
morphological features typical for this coast type can be identified in the water basins analyzed: tidal flats,
covering most of the basins areas, and single or multiple channels providing connection with an open sea.
The main parameters describing the geometry of the basins – their surface area at the mean water level,
average water depth, length and cross-sectional profile of the inlets etc. – vary significantly from basin to
basin. However, certain functional dependence between most of these parameters can be formulated, as
described in a classical work of O’Brien (1967) or – for the basins of the German Wadden Sea – by Schroeder
et al. (1994) and Niemeyer et al. (1995). The importance of the above-mentioned variability and regularities
from the point of view of the hydrodynamics and the water transport through the system has been addressed
recently e.g., by Stanev et al. (2003a,b) and Herman (2007b). The strong dependence of the basins’ volumes,
surface areas and the cross-sectional profiles of the inlets on the water level is well known to be one of the main
sources of strongly nonlinear behaviour of the tidal systems.

The amplitudes of the three most energetic tidal components M2, S2 and N2 vary from 94 cm, 26 cm and
16 cm at the entrance to the inlet between Borkum and Juist to 106 cm, 28 cm and 17 cm, respectively, at the
entrance to the inlet between Norderney and Baltrum (values based on the long-term modelling results with
the Delft3D model; see next section). The phase lag between the two above locations equals for all three
Fig. 1. Location of the study area on the German North Sea coast. Continuous lines in the large panel show the curvilinear grid of the
Delft3D model (every 10th line in each direction), the star – the location of an input point for the wind atlas and the NN modelling (see
text for detailed description). In the small panel the bathymetry (in meter relative to the German datum) of the study area is shown. The
dashed line marks the boundary of the region, in which the results are analyzed and modelled with PCA/NNs. The triangle shows the
location of the water level station RIFFGAT. Points 1–4 show the locations, in which the statistical distribution of water levels and
currents is analyzed (Supplementary material to Section 5).
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components �24�. Yearly mean wave heights seawards from the inlets are slightly lower than 1 m. According
to the classification of Hayes (1979) the region is subject to upper mesotidal conditions. Although the tidal
forcing is the dominating factor shaping the hydrodynamic phenomena in the study area, the spatial and tem-
poral variability of water levels and currents can be significantly modified by (especially north-westerly) winds,
see further Section 6 and Herman (2007b).
3. Description and verification of the model

As mentioned in Section 1, the work presented here is part of a larger project, the main purpose of which is
to produce a medium-term database (1962–2002, time range in which the input data are available; see below)
of water level, current and wave data for the area under interest. The hydrodynamic modelling is performed by
means of the two-dimensional (2D) version of the Delft3D model (Roelvink and van Banning, 1994; Delft
Hydraulics, 2003), based on depth-averaged momentum and continuity equations. Comparisons between
the results of the 2D and 3D model runs in a three-month-test period 09–11.2002 showed the ability of the
2D version to reproduce the water levels and the vertically-integrated currents with high accuracy: the differ-
ences between the two model runs remained within 2–4 cm for water levels (with slightly higher values at low
water – the 2D version tends to produce slightly higher low water levels) and within 2–5 cm/s for currents,
independently on wind conditions. Thus, the use of the 2D Delft3D version instead of the computationally
expensive 3D version is justified (and is a common practice in tidal modelling over longer periods of time).
No temperature and salinity variations have been taken into account in this study – strong tidal mixing
and small water depths in the study area make any density-related effects negligible. The Reynold’s stresses
in Delft3D are determined using the eddy viscosity concept; the Reynold’s stress tensor is assumed to be aniso-
tropic, with the horizontal eddy viscosity coefficient (assumed constant within the study area) much larger
than its vertical counterpart (Delft Hydraulics, 2003).

The model equations are formulated in orthogonal curvilinear coordinates, discretized onto a staggered
Arakawa-C grid and time-integrated by means of an ADI (alternating direction implicit) numerical scheme.
For the modelling in shallow tidal seas one of the most crucial features of Delft3D is the flooding/drying
scheme. Because of the importance of robust and accurate modelling of drying and flooding of tidal flats
for our purposes, various test model runs have been performed with different values of the parameters
governing the functioning of the flooding/drying algorithm, including the minimal water depth for which a
grid point is considered ‘wet’, methods of interpolation of water level and depth to different corners/sides
of grid cells of the staggered grid etc. (for details see Delft Hydraulics, 2003). All tests gave very similar results,
showing that the algorithm functions robustly in relatively broad range of values of the above-mentioned
parameters. Further in the study the set of parameters has been used for which the spurious water-level fluc-
tuations generated by drying/flooding were minimal. A brief summary concerning the model setting is pro-
vided in Table 1.

The simulations have been performed on a curvilinear grid with a spatial resolution varying from �50 m in
the inlet between Juist and Norderney (called Norderneyer Seegat; the main area of interest within the
MOSES project) to �300 m at the north-western model boundary (Fig. 1). The time step has been set to
0.5 min. The model has been driven by interpolated time series of the free surface elevation at the open
Table 1
Some parameters concerning the setup of the Delft3D model for the study area (see Delft Hydraulics, 2003, for details)

Parameter Value

Time step 30 s
Wind stress coefficient From 0.00063 at 0 m/s to 0.00723 at 100 m/s
Bottom roughness formulation Chezy, roughness coef. 65.0 m1/2/s
Drying/flooding scheme Minimum water depth: 10 cm

Depth at water level points: MAX method
Marginal depth in shallow areas: �999.0 m

Horizontal eddy viscosity 1.0 m2/s
Horizontal eddy diffusivity 10.0 m2/s
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boundary and by space- and time-varying winds. All input data (hourly fields of water level and wind velocity
components on a 0.1� � 0.05�-grid in geographical coordinates) have been extracted from the dataset pro-
duced within the European Union project HIPOCAS (Hindcast of Dynamic Processes of the Ocean and
Coastal Areas of Europe; Weisse et al., 2002) and covering the period 1962–2002. The HIPOCAS project
aimed at generating a consistent hydrodynamic dataset for the North Sea, applicable as a source of boundary
conditions for small-scale coastal models. The HIPOCAS data have been shown to reproduce the statistical
distribution of the analyzed quantities with high accuracy. From the point of view of the present study it is
important to notice that there are no trends in the water level data. The variability of the HIPOCAS winds
is more complex: although no trends are present, an increasing occurrence frequency of strong wind events
in the cold time of the year can be noticed (see Section 6); however, for this study changes in the course,
not the frequency of wind events are important. No such changes could be found in the analysis of the HIP-
OCAS wind data.

Because of the coarse resolution of the HIPOCAS data the wind fields it provides are almost uniform (both
in terms of magnitude and direction) over the whole study area. To increase the quality of the wind data over
the Wadden Sea (sheltering effects of the islands, variations in the roughness coefficient due to drying/flooding
of the tidal flats etc.), the wind fields used as input for Delft3D have been produced from HIPOCAS time
series in a point marked with a star in Fig. 1 by means of the wind atlas of the German Meteorological Service
(DWD). The wind atlas had been produced within MOSES and designed to fit its purposes. It contains high-
resolution unidirectional wind fields for a number of wind speed, wind direction and water level classes,
calculated by means of a wind model in which variations of the surface friction due to drying/flooding of
the tidal flats and due to changes in sea state (estimated by a simple statistical wave model) have been taken
into account.

The applicability of Delft3D to modelling of the Wadden Sea hydrodynamics has been proved in numerous
studies performed by the Coastal Research Station and others, see e.g. Roelvink and van Banning (1994), Lui-
jendijk (2001) or Delft Hydraulics (2001). Within MOSES the verification of the modelling results has been
performed at a station RIFFGAT to the south of the island of Norderney (triangle in Fig. 1) in the period
September–November 2002. Fragments of the measured and modelled time series of water levels are shown
in Fig. 2. As can be seen, the model performance is satisfactory, although the low water levels tend to be over-
estimated (on average by 17 cm) and the high water levels underestimated (on average by 9 cm). There is also a
phase shift of about 40 min between the two time series, which is present in the boundary data as well
(see Table 2). It must be of course taken into account by modelling of the particular storm events etc., but
its presence is not crucial for the statistical analysis of medium- and long-term modelling results.

In the following, the results of the Delft3D simulations from the first two years of the analysis period, 1962–
1963, are used to develop a statistical model (based on PCA and NN) of the hydrodynamics of the study area.
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Fig. 2. Time series of measured and modelled water level at the station RIFFGAT (location see Fig. 1) in October 2002.



Table 2
Statistics of the modelled water levels at the station RIFFGAT in September–November 2002

Phase shift (min) 0 40

Correlation coefficient (%) 93 98
Std. dev. of differences (m) 0.35 0.16
Mean difference (m) �0.04 �0.02

282 A. Herman et al. / Ocean Modelling 17 (2007) 277–299
The applicability of the trained neural networks is then tested by comparing their predictions with the Delft3D
results from the years 1985 and 2002. To eliminate the possibility that the choice of the particular years for the
PCA analysis could have an influence on the performance of our modelling system (as the interannual and
seasonal wind variability discussed in Section 6 could suggest) we repeated the whole procedure starting with
the 1985 data and verifying the results for the 1962 data. The differences between the modes were insignifi-
cantly small and the overall performance was comparable with the one presented below. We therefore do
not discuss this problem further.
4. Principal component analysis of the modelling results

The modelled water level and current fields have been saved hourly and will be analyzed further inside an
area marked with a dashed line in Fig. 1. Every 5th grid point in each direction has been taken into account,
resulting in Np � Nt-point data matrices of water levels W = [Wpt] and currents V = [Upt] + i[Vpt], where
Np = 3454 is the number of data points (only those points, which remained wet during at least 10% of the
simulation time have been taken into account) and Nt = 17,521 is the number of time points (hourly from
01.01.1962, 00:00 to 01.01.1964, 00:00). U and V denote the cartesian components of the current velocity vec-
tor and i ¼

ffiffiffiffiffiffiffi

�1
p

is the imaginary unit. As described in Section 2, tidal flats, falling dry at low water levels,
cover considerable part of the study area. This results in a certain amount of ‘exception’ values in the analyzed
datasets. For the purpose of the further analysis those values have been replaced with zeros in the currents
matrix and with bottom level values in the water level matrix (to avoid discontinuities in the time series).
The considerable amount of locations falling dry at low water was the reason why the area-mean-values were
not removed from the data prior to the PCA, as is a common practice e.g., in similar studies concerning
climate data. Thus, we analyze water levels and currents themselves and not their anomalies. Theory and
technical details concerning PCA can be found in a number of textbooks, e.g., in Preisendorfer (1988).
4.1. PCA of water levels

As shown in Table 3, the first linear mode of water levels explains over 97% of the total variance of the data
record analyzed. The first three modes are enough to reproduce over 99.6% of the variance. The spatial
Table 3
Percentage of total variance explained by the first ten linear modes of water levels and currents

Water levels Currents

Mode Separate Cumulative Separate Cumulative

1 97.177 97.177 84.471 84.471
2 1.803 98.980 7.263 91.734
3 0.638 99.618 1.966 93.699
4 0.144 99.762 1.508 95.208
5 0.052 99.814 0.677 95.885
6 0.034 99.848 0.535 96.419
7 0.029 99.877 0.403 96.823
8 0.023 99.900 0.290 97.113
9 0.017 99.917 0.229 97.342

10 0.012 99.929 0.202 97.544
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patterns given by those three modes are shown in the left panels of Fig. 3 (note different color scales in the
panels; the modes have been scaled so that all components have a unit standard deviation). As can be seen,
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the first mode and the associated principal component (PCwl,1) represent to a high degree the variation of the
average water level in the study area. This mode has positive values in all grid points. Seawards from the
islands and in the channels those values vary only slightly, only in shallowest and furthest from the open
boundary situated locations they are significantly lower than elsewhere. These are the locations where the per-
centage of variance explained by the first mode (defined as the squared correlation coefficient between the PC
and the time series in a given point) is lower than 90% (Fig. 3b).

The second and third mode (Fig. 3c and e) are responsible for the alongshore water level gradient seawards
from the islands, corresponding to the propagation of the tidal signal along the coast, as well as for the water
level gradients in the inlets and along the channels, corresponding to the propagation of the tide into/out of
the basins during flood/ebb. Those two modes (and the further ones, not shown in the figures, as well) have
higher spatial variability than the first one and are important only locally (Fig. 3d and f). The five leading
modes together explain over 99% of the variance in 93% of grid points and over 97% of the variance in
97% of grid points (Fig. 4a). The standard deviation of differences between the original and the reconstructed
(with PCwl,1–PCwl,5) dataset varies between 3 and 4 cm to the north of the islands to 6 and 8 cm over most of
the tidal flats (Fig. 4b), only in some isolated locations it is slightly higher. The highest values occur in the very
shallow bay (Ley Bay) at the coast, a considerable part of which lies above the mean water level (Fig. 1). Thus,
the water level time series there consist of long periods with constant values, which can be reproduced with
sufficient accuracy only with a prohibitively large number of PCs (a problem analogous to the Fourier analysis
of piecewise-constant functions; see also the next section).

The interpretation of the role of the first mode given above is confirmed by a strong relationship between
PCwl,1 and HIPOCAS water level in the chosen point, as shown in Fig. 5a. The correlation coefficient between
the two time series equals 99.7%. Moreover, for water levels higher than �0 m the relationship is almost linear.
As can be expected, the nonlinear behaviour of the system manifests itself more strongly when water depths
are lower and the bottom topography, friction etc. play the dominant role. As can be seen from the time var-
iability associated with the first three leading modes of water levels presented in Fig. 5b, the tidal signal is
strongly present not only in PCwl,1, but in the further ones as well – splitting of the ‘information’ associated
with single processes among several modes is a typical feature of the linear PCA. As will be shown in Section 6,
all mode/PC pairs are a complicated mixture of signals due to the tidal and wind forcing.

The existence of nonlinear relationships between the linear PCs of water levels manifests itself in the phase
diagrams of the data in the space spanned by the PCwls, see Herman (2007a). Although the PCwls are – by
construction – linearly independent, there exists statistical interdependence between them (in other words,
their joint probability distribution is not equal to the product of the probability distributions of single PCwls).
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These statistical relationships, together with the dependence of PCwl,1 on the HIPOCAS water levels (Fig. 5a),
are obviously very important from the point of view of the NN modelling, discussed further.
4.2. PCA of currents

The first three linear modes of currents, together with the spatial distribution of the percentage of variance
explained by them, are shown in Fig. 6. The first mode explains 84.5% of the variance, the second one 7.3% –
not surprisingly significantly less than the first modes of water levels (see Table 3). Moreover, the remaining
part of the variance is more regularly distributed among the further modes than in the case of water levels, e.g.,
as many as 40 modes are necessary to reproduce 98% of the total variance.

The first, most energetic mode (Fig. 6a) reflects mainly the flow in the tidal channels, where it explains over
90% of the variance. In the open sea region to the north of the islands almost all the variance is distributed
among the two leading modes (Fig. 6a–d). The further modes are important only locally, mainly over the tidal
flats. It must be remembered that these are the locations where large parts of the data consist of zero values
(some of the points are flooded only at spring tides and/or during strong wind events). In the case of the cur-
rents the influence of drying and flooding is understandably higher than in the case of water levels: shortly
before a given location falls dry and shortly after it is flooded again strong currents are present, resulting
in very uneven time series. This fact can, at least partially, explain the scatter of variance among numerous
only locally significant modes. One can argue that throwing those further modes away removes from the data
some of the distortions that arise due to the flooding/drying scheme (which are never to eliminate entirely from
the Delft3D model). To investigate in more detail the influence of drying/flooding on the PCA results we
repeated the analysis two additional times, after throwing away all points that remained dry at least 75%
(run A) or at least 50% of the time (run B), respectively (as compared to 90% in run 0, the results of which
were described so far). The differences between the results of the runs 0 and A were negligible, presumably
because the number of points included in run 0 and excluded in run A makes up only 4% of Np. Interestingly,
run B resulted in a slightly different variance distribution among the leading modes, with more variance asso-
ciated with the first mode and less with the second and third mode. Moreover, the total amount of variance
described by the first five modes was only 0.9% higher in run B than in run 0. The loss of variance resulting
from the inclusion of the points regularly falling dry can be therefore described as minor.

The spatial distribution of variance reconstructed with the five leading modes reflects the bathymetry of the
study area (Fig. 7a): the larger the water depth, the higher the reproduced percentage of variance. The first five
modes retain at least 97% of variance in 49.5% of points and at least 90% of variance in 69.8% of points. The
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Fig. 6. As in Fig. 3, but for the current velocity data. The arrows have been interpolated onto a regular grid for plotting purposes.
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velocities are reproduced within an error of 4–6 cm/s to the north of the islands and 7–10 cm/s over most of
the tidal flats (Fig. 7b). The standard deviation of differences between the original and reconstructed time ser-
ies is lower than 10 cm/s in 95.9% of points.



Fig. 7. As in Fig. 4, but for the current velocity data. Standard deviations in cm/s.

A. Herman et al. / Ocean Modelling 17 (2007) 277–299 287
Not surprisingly, there is a phase shift of �90� between PCwl,1 – and consequently between the HIPOCAS
water level (recall Fig. 5a) – and PCcur,1, as shown in Fig. 8a. However, the points are broadly scattered around
this ‘ideal’ path, suggesting high sensitiveness of the currents even to small changes of the forcing, which are
practically insignificant for the water levels. This (well known) phenomenon – present in the phase diagrams
of the data as well (see Herman, 2007a) – lets expect that the prediction of currents by means of the methods
discussed in this paper is more challenging than the prediction of water levels; further on it will be shown that
this is the case. Similarly as in the case of water levels, the time variability associated with the three leading
modes reveals a dominating tidal modulation (Fig. 8b and c). PCcur,3 has twice the tidal frequency, similarly
as PCcur,4 and PCcur,5 (not shown). Interestingly, PCcur,3 shifts to a different pattern during extreme wind con-
ditions, when it exhibits a time variability strongly linearly correlated with PCcur,1 (days 0–40 in Fig. 8b and c).
More details concerning the influence of wind on the PCs of currents will be given in Section 6.
5. Neural network modelling of the tidal dynamics

The NN architecture used here is the multi-layer perceptron (MLP), consisting of two layers of weights
providing full connection from the input units to the hidden units and from the hidden units to the output
units. Thus, it is a so-called two-layer feed-forward network with error gradient backpropagation as a learning
procedure. Basics of NNs can be found in a number of textbooks (e.g. Wu, 1993; Hagan et al., 1995) and will
not be discussed here. All simulations presented further have been performed with the NETLAB package of
MATLAB scripts developed by Nabney (2004). Some of the most important parameters of the MLP used
in this study are: hyperbolic tangent activation function of the hidden layer, linear activation function of
the output layer (most appropriate choice for nonlinear regression problems) and conjugate gradient optimi-
zation algorithm, see Nabney (2004) for details. Other optimization algorithms (scaled conjugate gradient and
quasi-Newton), as well as other network architectures (three-layer MLP with and without direct connections
from the input layer to the output layer and Elman networks) have been tested, but gave worse results and/or
made the training difficult and time consuming. They are therefore not considered further.

After numerous tests the number of hidden units Nh has been set to 60 in both the water levels and the
currents NN. Further increase of Nh brought no improvement to the results. As candidates for input para-
meters to the networks the HIPOCAS water levels n and wind velocity components [Uw,Vw] in the point
marked with a star in Fig. 1 in the time range from t � 3Dt to t (with Dt = 1 h) have been considered. Addi-
tionally, in the case of the currents NN tests have been made with PCs of water levels as input. From a number
of over 20 networks with different combinations of the number of input neurons and of the input parameters,
the following set gave the best results (in terms of the correlation coefficients rr and standard deviation of dif-
ferences rd between the original and modelled PCs) for the water levels NN:

https://www.researchgate.net/publication/248802966_NETLAB_Algorithms_for_Pattern_Recognition_Advances_in_Pattern_Recognition?el=1_x_8&enrichId=rgreq-b8a55618358e6f3c308aeaa482620c47-XXX&enrichSource=Y292ZXJQYWdlOzIyMzQ0MzMzNztBUzoyNTg3NjI2MDI3MDg5OTNAMTQzODcwNTIyMDY1NQ==
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½nðt � 2DtÞ; nðt � DtÞ; nðtÞ; U wðtÞ; V wðtÞ;U wðtÞ; V wðtÞ�:
For the currents NN the optimal input vector turned out to be:
½nðt � 3DtÞ; nðt � 2DtÞ; nðt � DtÞ; nðtÞ; UwðtÞ; V wðtÞ; UwðtÞ; V wðtÞ; PCwl;2ðtÞ; PCwl;3ðtÞ�;
where ½Uw; V w� is the 4-h average of [Uw,Vw] (from t � 3Dt to t). Thus, Ni = 7 and Ni = 10 input units have
been used for the modelling of water levels and currents, respectively. The last two input neurons of the
currents NN contain the 2nd and 3rd PC of water levels, PCwl,2 and PCwl,3. Fig. 5a helps to understand
why PCwl,1 brought no improvements to the network performance during tests and why it has not been used
as an input parameter in the finally chosen, ‘best’ network: PCwl,1 is practically a copy of the fourth input
neuron n.

The output of the networks was:
½PCwl;1ðtÞ; . . . PCwl;5ðtÞ�
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and
Fig. 9.
the per
½PCcur;1;xðtÞ; . . . PCcur;5;xðtÞ;PCcur;1;yðtÞ; . . . PCcur;5;yðtÞ�;

respectively, resulting in No = 5 of output units in the case of water levels and No = 10 in the case of currents.
The dataset 1962–1963 has been divided into the training data (January 1962–June 1963) and the validation
data (July–December 1963). Tests have shown that the proportion 75% of the data for training and 25% for
validation is in this case optimal and that the choice of a particular period for training/validation is not impor-
tant. By selection of the finally accepted networks from the test ensemble their ability to reproduce the vali-
dation data accurately (highest possible rr and lowest rd) was the only criterion considered. Other features,
like e.g., the time needed for training or the learning rate, were considered less important – especially in view
of the fact that the behaviour of the tested networks in terms of those criteria varied only slightly (e.g., not a
single one from the networks required more than an hour to train and the final values of the cost function lied
within 10% of each other).

5.1. NN modelling of water levels

The performance of the trained NN for water levels for the test dataset is shown in Fig. 9 as scatter plots of
the five leading PCs. All PCs have been reconstructed with a very high accuracy; the correlation coefficients rr

are all higher than 99.6%, rd vary from 0.021 for the first PC to 0.08 for the fifth PC (see Table 4). When judg-
ing the performance of the NN it must be remembered that, although all PCs have a unit standard deviation,
they are responsible for very different amount of variance of the original dataset (Table 3). Consequently, it is
of fundamental importance to simulate PCwl,1 with the highest possible accuracy. The reconstruction errors of
the higher PCs are less relevant for the quality of the reconstructed data.

An important fact is that the PCs can be simulated accurately in the whole range of their values; Fig. 9
shows that the NN copes well not only with ‘typical’ events, but with ‘extreme’ ones (up to ±4 standard
deviations) as well – although the amount of such events in the training dataset is very limited.
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Table 4
Statistical parameters describing the NN performance for the water level test dataset July–December 1963

PCwl,1 PCwl,2 PCwl,3 PCwl,4 PCwl,5

Corr. coef. (%) rr 99.98 99.74 99.83 99.69 99.64
Std. dev. of differences rd 0.021 0.069 0.059 0.072 0.081
Mean difference 0.004 0.018 �0.009 0.002 0.020
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When simulating water levels with the technique proposed in this study, there are more sources of errors
than the above described inaccuracies in reconstructing the PCs. Firstly, the spatial modes calculated for
the 1962–1963 data represent only approximately the variability of the data from other time periods. Secondly,
there are only five PCs available, leading to errors analogical to those presented in Fig. 4 for the Delft3D
results. Nevertheless, the procedure leads to very satisfactory results, as Fig. 10 shows for the years 1985
and 2002. The reconstructed data represents at least 98% of the variance of the Delft3D results in 88.4% of
points in the year 1985 and in 88.1% of points in the year 2002. In majority of points the standard deviation
of differences between the original and reconstructed data is lower than 7 cm. A very important fact is that the
quality of the results is very similar in both years analyzed, indicating that a similar accuracy can be expected
Fig. 10. Performance of the NN model for the water level data from the year 1985 (a and b) and 2002 (c and d): spatial distribution of the
percentage of variance reconstructed with the NN (a and c) and of the standard deviation of differences (in cm) between the original and
reconstructed data (b and d). Axes labelling in km.
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when applying this approach to other time periods (although the patterns in Fig. 10b and d are not the same,
the differences do not exceed 1 cm anywhere).

Another measure of the performance of the NN modelling is its ability to reproduce the statistical distri-
bution of the modelled quantities. This ability was investigated in a number of locations in the study area.
The results in four of these locations (marked with numbered points in Fig. 1) are shown in Supplementary
Fig. 1. Although the NN fails to reproduce some of the small-scale variations in the Delft3D-modelled discrete
probability density curves (present particularly at water levels below 0 m), the NN-modelled curves agree well
with their Delft3D-modelled counterparts. Moreover, the agreement is satisfactory in all analyzed locations,
including the one which falls dry at low water. Similar results were obtained for other analyzed locations, not
shown in the diagrams, as well.
5.2. NN modelling of currents

The NN modelling of currents is, not surprisingly, more demanding than the modelling of water levels.
Although PCcur,1, containing 84.5% of the total variance, has been reconstructed with high accuracy – the
standard deviation of differences between the original and reconstructed time series equals 4.1% and 5.6%
(for the x- and y-component, respectively), the correlation coefficient 99.93% and 99.87% – the modelling
errors of the further PCs are higher, see Table 5 and Figs. 11 and 12. The scatter of the NN-predicted time
series is particularly high for PCcur,3 and PCcur,5 (Fig. 11c and e and Fig. 12c and e).

The spatial distribution of the reconstructed variance of the currents from the years 1985 and 2002 and of
the standard deviation of differences between the Delft3D and the NN results is shown in Fig. 13. The distri-
bution of both parameters reflects the bottom topography of the study area: the higher the water depth, the
higher the percentage of the reconstructed variance and the lower the standard deviation of differences (see
also Fig. 14). The last parameter varies from 3–6 cm/s seawards from Juist and Norderney to 6–9 cm/s in
the tidal channels and 10–15 cm/s over the tidal flats. It is not surprising if one considers that this pattern
was already present in the PCA results in Fig. 7. As can be seen in Fig. 14a, within the mean tidal range
the percentage of the reconstructed variance decreases almost linearly with the local depth.

The discrete probability density curves for the components of the current velocity show much higher
variability from point to point than the corresponding curves for water levels (Supplementary Fig. 2). Never-
theless, this variability has been remarkably well reproduced with the NN in all analyzed locations.
6. Influence of wind on water levels and currents

The properties of the modes and PCs of water levels and currents described so far suggest the dominance of
the tidal processes over meteorological forcing in the study area. However, it is well known that the local wind
conditions – especially by stable wind direction and/or high wind speeds – can significantly modify the
temporal and spatial water level and current patterns in tidal basins, as studied recently e.g., by Herman
(2007b) for the tidal inlet Norderneyer Seegat and its surroundings. It was stressed before that PCA tends
to scatter physical patterns among a number of modes, making the physical interpretation of its results prob-
Table 5
Statistical parameters describing the NN performance for the currents test dataset July–December 1963

PCcur,1 PCcur,2 PCcur,3 PCcur,4 PCcur,5

x-components
Corr. coef. (%) rr 99.93 99.41 91.98 98.11 81.49
Std. dev. of differences, rd 0.039 0.109 0.374 0.198 0.503
Mean difference 0.004 �0.004 0.014 0.018 �0.003

y-components
Corr. coef. (%), rr 99.87 98.99 90.49 98.44 76.01
Std. dev. of differences, rd 0.053 0.149 0.418 0.195 0.582
Mean difference 0.000 �0.007 �0.021 �0.015 0.013



–4 –2 0 2 4
–4

–3

–2

–1

0

1

2

3

4

 

 

50 100 150 200

–4 – 2 0 2 4
–4

–3

–2

–1

0

1

2

3

4

 

 

20 40 60 80 100

–4 –2 0 2 4
–4

–3

–2

–1

0

1

2

3

4

 

 

10 20 30 40

–4 –2 0 2 4
–4

–3

–2

–1

0

1

2

3

4

 

 

20 40 60 80

–4 –2 0 2 4
–4

–3

–2

–1

0

1

2

3

4

 

 

10 20 30 40 50

a b

d e

c

Fig. 11. As in Fig. 9, but for the x-components of the leading PCs of currents.

Fig. 12. As in Fig. 9, but for the y-components of the leading PCs of currents.
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Fig. 13. As in Fig. 10, but for the currents data. Standard deviations in cm/s.
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lematic. Nevertheless, it is tempting to undertake some analysis concerning the way in which the wind influ-
ence manifests itself in the modelling results. Generally, this influence consists of two parts: the ‘external’ one,
related to the influence of wind and atmospheric pressure on the large scale water level variations in the North
Sea and acting on the study area through the open boundary conditions, and the ‘internal’ one, related to the
direct action of wind within the study area. One of the numerous possible approaches towards this analysis
could be to run the model without wind two additional times: with realistic boundary conditions (to estimate
the ‘internal’ part) and with astronomical boundary conditions (to estimate the ‘external’ part). Another
straightforward approach toward this issue – justified by the linear nature of PCA – is to remove the tidal
signal from each of the PCs (PCwl,i and PCcur,i, i = 1, . . . ,5) and to investigate the properties of the residual
time series. Let PCwl,t,i and PCcur,t,i denote the time series reconstructed based on the amplitudes and phases of
the 25 most energetic tidal components, estimated for PCwl,i and PCcur,i, respectively, with the T_TIDE
package by Pawlowicz et al. (2002). We will analyze the properties of the ‘residual’ time series PCwl,r,i =
PCwl,i � PCwl,t,i and PCcur,r,i = PCcur,i � PCcur,t,i in the context of two quantities: non-tidal component nr of
the HIPOCAS water level variations n in the point marked with a star in Fig. 1 and the time series of the wind
velocity components in this point. The time series nr = n � nt, where nt denotes the tidal part of n obtained
with T_TIDE analogously to PCwl,t,i and PCcur,t,i.

As stated in Section 3, there are no trends in the HIPOCAS data. This is true if the hourly values are con-
sidered: the linear trend equals only about 10 cm/s per decade for wind speeds and �0.3 cm per decade for
water levels. However, the analysis of the yearly and seasonal mean wind speed values reveals an interesting

https://www.researchgate.net/publication/222300347_Classical_tidal_harmonic_analysis_with_error_analysis_in_MATLAB_using_T_TIDE?el=1_x_8&enrichId=rgreq-b8a55618358e6f3c308aeaa482620c47-XXX&enrichSource=Y292ZXJQYWdlOzIyMzQ0MzMzNztBUzoyNTg3NjI2MDI3MDg5OTNAMTQzODcwNTIyMDY1NQ==
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feature (Fig. 15). In the four decades studied the winds became slightly weaker in the summer (June–August)
and markedly stronger in winter (December–February), resulting in a positive trend for the yearly-mean wind
speeds. This phenomenon is related to increasing occurrence frequency of strong wind events in the cold time
of the year. Another important feature is the seasonal variability of wind speed and direction – and the result-
ing variability of water level residual nr – which manifests itself in the differences of 2–3 m/s in the average
winter and summer wind speeds (Fig. 15), as well as in the distributions presented in Fig. 16. Most strong wind
events with winds above 15 m/s take place in winter. They are associated with low pressure systems passing
typically in an approximately easterly direction to the north of the study area. Thus, during storms the wind
shifts gradually from SW through W to NW. Strong easterly winds are rare. The most frequent wind direction
in winter (WSW) does not deviate much from the annual average (the dominance of WSW winds, which is an
offshore direction in the study area, can partly explain the lack of trend of the wintertime mean water levels,
that one could expect to accompany the increasing wind speeds shown in Fig. 15); in the summer the
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dominating wind directions are broadly scattered between SW and NW; southeasterly winds are untypical for
this time of the year (Fig. 16c).

In view of these properties of the wind distribution it is interesting to notice the existence of the ‘dominat-
ing’ wind direction if the variability of nr and PCwl,r,1 is concerned. The dependence between these quantities
and the wind speed is limited to a relatively narrow directional sector centered approximately around an
WNW–ESE axis. Let denote the component of the wind velocity vector along this axis by uw and the compo-
nent perpendicular to this axis by vw:
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dratic (presumably a consequence of a quadratic friction term applied in the model at the free surface), with
the linear correlation coefficient between signðuwÞu2

w and PCwl,r,1 equal to 86% and between signðuwÞu2
w and nr
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(Fig. 17b). It can hardly be a coincidence that exactly the WNW winds are known to produce the highest
‘effective’ wind speeds and thus to result in the highest storm surges along the southern North Sea coast. This
phenomenon is related to the larger-scale processes, as the above results clearly demonstrate: the uw-forcing is
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Table 6
Variance of PCwl,r,i and PCcur,r,i (in percent of the variance of PCwl,i and PCcur,i, respectively). Y = year, W = winter (December–
February), S = summer (June–August)

PC Water level Current, x-components Current, y-components

Y W S Y W S Y W S

1 12.8 21.5 4.1 2.0 3.2 0.9 6.0 9.7 2.5
2 20.5 32.3 8.7 12.6 19.1 5.5 72.3 82.5 50.1
3 25.1 37.4 12.1 26.3 35.5 16.6 49.4 62.9 29.9
4 63.3 77.1 38.7 78.1 85.7 60.1 46.3 59.4 27.8
5 74.4 85.1 53.7 35.7 46.3 23.0 42.4 53.8 27.7
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present already in the boundary data (through nr) and is without significant transformations transferred to
PCwl,r,1 (recall Fig. 5a). Thus, PCwl,1 and the associated mode (Fig. 3a) are responsible for the water level vari-
ations inside the study area resulting from both the tidal forcing and the wind surge present in the boundary
conditions. The variance of PCwl,r,1 constitutes 12.8% of the overall variance of PCwl,1, with increased percent-
age in the winter months (21.5%) and decreased in the summer months (4.1%), see Table 6.

The interpretation of the role of PCwl,r,2 and PCwl,r,3 is less straightforward. Fig. 17c shows a scatterplot of
these time series for various wind conditions. Generally, for uw > 0 (uw < 0) we have PCwl,r,3 > PCwl,r,2

(PCwl,r,3 < PCwl,r,2). Also, it can be shown that the highest PCwl,r,2 (PCwl,r,3) values occur at low (high) tide
– which is not surprising if one examines the spatial modes in Fig. 3c and e. The role of the second and third
mode over the tidal flats is to compensate for low values of the first mode at shallow locations (Fig. 3a). At
high water levels this can be done better with the third mode (with its positive values seawards from the
islands); at low water levels – with the second mode (with its negative values seawards from the islands).
The effect is of course strongest at times with high tide accompanied with positive uw and low tide accompa-
nied with negative uw. Similarly to PCwl,r,1, the percentage of the non-tidal variance of the further components
is significantly higher in winter than in summer (Table 6). Also, the further modes/PCs reflect mainly the
‘internal’ (local) part of the wind forcing, contrary to PCwl,r,1, which reflects mainly the ‘external’ part (the
variability of nr).

In the case of currents the situation is similar – with an analogous seasonal variation of the percentage of
variance of PCcur,r,i relative to PCcur,i (Table 6), strong dependence of PCcur,r,1 on uw (not shown) etc. – but the
detailed interpretation of the PCs is more complicated, partly because the complex modes must be multiplied
by the complex PCs to obtain meaningful current patterns. Herman (2007b) showed that the presence of wind
can drastically change these patterns and momentary water transport through the boundaries of the tidal
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basins under study. E.g., during extreme storm surges generated by westerly winds the wind-generated cur-
rents in the Wadden Sea can strongly reduce or even totally reverse the direction of the flood current in
the Norderneyer Seegat (Koch and Niemeyer, 1977). The wind has also an indirect influence on the spatial
current distribution, e.g., easterly winds lead to lower water levels in the study area, thus increasing the role
of the bottom topography upon the circulation regime. In Fig. 18 the dependence of PCcur,r,1, PCcur,r,2 and
PCcur,r,3 on uw is shown. For positive (negative) uw the action of PCcur,r,1 upon the first mode of currents
(Fig. 6a) is to direct the flow through the inlets between the islands to (from) the Wadden Sea. Also, by high
positive uw the non-tidal parts of PCcur,1 and PCcur,2 tend to decrease (increase) the cross-inlet water transport
in the Norderneyer Seegat during flood (ebb). An examination of PCcur,r,3, which plays an important role over
the tidal flats (Fig. 6f), reveals that the current direction in shallow locations corresponds to the local wind
direction. The variability of PCcur,r,3 is responsible for the specific behaviour of PCcur,3 during strong wind
events, pointed out in Section 4 (Fig. 8b and c); at high water PCcur,r,3 directs the flow over the flooded shal-
lows in the wind direction. Generally, the role of the non-tidal part of currents is higher seawards from the
islands and in the tidal channels, where the water depth is high enough for the wind-driven circulation to
develop.
7. Summary and discussion

Medium-term modelling of hydrodynamic processes in shallow coastal seas is a difficult and computa-
tionally expensive task. An effective and accurate approach to the problem has been proposed in this
paper, combining the high-resolution hydrodynamic modelling with methods based on the principal com-
ponent analysis and on neural networks. The main idea behind this approach is the universal character of
the spatial patterns of the analyzed quantities (water level and current fields) over time. Although the
results of the principal component analysis are – strictly speaking – representative exclusively for the data
used to perform this analysis, the repeatable character of the phenomena studied makes it possible to use
the same patterns (modes) for various time periods, thus reducing the modelling task to simulating the
principal components. A simple feed-forward neural network is sufficient to produce the leading PCs based
on input time series of water level and wind in a chosen (single) location. To put it shortly: having a set of
spatial modes, a trained NN and time series of input data, one is able to simulate e.g., one year of water
level and current fields within seconds – unachievably fast for hydrodynamic modelling (e.g., a one-year-
simulation with Delft3D in our study area required two months of calculations on a personal computer).
Thus, the approach can be used to obtain water level and current fields of high quality in periods which
could not have been modelled with Delft3D because of time constrains. Moreover, the method has been
shown to be able to accurately reproduce the statistical distribution of the water levels and currents in
the study area, which is of crucial importance for the further application of the results e.g., for the
morphodynamic modelling.

There are some issues regarding the results presented in this work that deserve some discussion. One of
them concerns the choice of a location used as a source of input data for the NN modelling. The only
limitation seems to be that one should use data representative for the general conditions in the study area,
e.g., wind measurements from sheltered stations, distorted by the influence of the local topography, should
be avoided. The representativeness requirement means also that one can expect a decrease in the performance
of the PCA/NN technique with increasing size of the study area (relative to the characteristic dimensions of
meteorological and hydrodynamic patterns occurring within it).

Another important issue is the choice of the time period for the PCA. In Section 6 the presence of trends
e.g., in the wintertime mean wind speeds was discussed. In spite of that, no relation between the time period
selected for PCA and the quality of the NN modelling could be found – a clear indication that the occurrence

frequency and not the character of the strong wind events has changed during the four decades studied. Thus,
the quality of the NN modelling remained unaffected by those – for many problems (including morphodynam-
ics) very important – changes.

Finally, it must be stressed that the approach presented in this work gives results of the quality comparable
with the one obtained e.g., by Lee and Jeng (2002), Huang et al. (2003) or Lee (2004) for water level modelling

https://www.researchgate.net/publication/222792946_Application_of_artificial_neural_networks_in_tide-forecasting?el=1_x_8&enrichId=rgreq-b8a55618358e6f3c308aeaa482620c47-XXX&enrichSource=Y292ZXJQYWdlOzIyMzQ0MzMzNztBUzoyNTg3NjI2MDI3MDg5OTNAMTQzODcwNTIyMDY1NQ==
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in single locations. In spite of the noticeable higher complexity of the problem analyzed here, comparable
values of the correlation coefficients and standard deviation of differences could be obtained. If the PCA/
NN modelling of currents is concerned, it must be remembered that the results are of high quality when com-
pared with the results of Delft3D; their accuracy with the real-world currents could not be estimated because
of the lack of appropriate measurements.
Acknowledgements

The work presented here has been part of the research project MOSES (‘‘Modelling of the medium-term
wave climatology at the German North Sea coast”; Project No. 03 KIS 040) financed by the German Federal
Ministry for Education and Research (BMBF) under the umbrella of the German Coastal Engineering
Research Council (KFKI). We thank our colleagues from the Coastal Research Station for their assistance
and support. We also thank the anonymous reviewers for valuable comments and criticism that helped to
improve the quality of this paper.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/
j.ocemod.2007.02.004.
References
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O’Brien, M.P., 1967. Equilibrium flow areas of tidal inlets on sandy coasts. Proceedings of the 10th Conference on Coastal Engineering.

ASCE, New York, pp. 676–686.
Pawlowicz, R., Beardsley, B., Lentz, S., 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE.

Comput. Geosci. 28, 929–937.
Preisendorfer, R.W., 1988. Principal component analysis in meteorology and oceanography. Elsevier Science, New York, p. 425.
Roelvink, J.A., van Banning, G.K.F.M., 1994. Design and development of Delft3D and application to coastal morphodynamics. In:

Verwey, A., Minns A.W. (Eds.), Proceedings of Hydroinformatics 1994, USA, pp. 451–456.
Schroeder, E., Goldenbogen, R., Kunz, H., 1994. 24th Proceedings of the Coastal Engineering. Kobe, Japan, pp. 3251–3265.

http://dx.doi.org/10.1016/j.ocemod.2007.02.004
http://dx.doi.org/10.1016/j.ocemod.2007.02.004
http://dx.doi.org/10.1029/2006GL027769


A. Herman et al. / Ocean Modelling 17 (2007) 277–299 299
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